Delay-dependent robust absolute stability criteria for uncertain multiple time-delayed Lur’e systems

Author(s):  
Ali Kazemy ◽  
Mohammad Farrokhi
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Liang-Dong Guo ◽  
Sheng-Juan Huang ◽  
Li-Bing Wu

The problem of absolute stability analysis for neutral-type Lur’e systems with time-varying delays is investigated. Novel delay-decomposing approaches are proposed to divide the variation interval of the delay into three unequal subintervals. Some new augment Lyapunov–Krasovskii functionals (LKFs) are defined on the obtained subintervals. The integral inequality method and the reciprocally convex technique are utilized to deal with the derivative of the LKFs. Several improved delay-dependent criteria are derived in terms of the linear matrix inequalities (LMIs). Compared with some previous criteria, the proposed ones give the results with less conservatism and lower numerical complexity. Two numerical examples are included to illustrate the effectiveness and the improvement of the proposed method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Wenyong Duan ◽  
Yan Li ◽  
Jian Chen ◽  
Lin Jiang

This paper is concerned with the problem of the absolute and robustly absolute stability for the uncertain neutral-type Lur’e system with time-varying delays. By introducing a modified Lyapunov-Krasovskii functional (LKF) related to a delay-product-type function and two delay-dependent matrices, some new delay-dependent robustly absolute stability criteria are proposed, which can be expressed as convex linear matrix inequality (LMI) framework. The criteria proposed in this paper are less conservative than some recent previous ones. Finally, some numerical examples are presented to show the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document