Robust control for railway transport networks based on stochastic P-timed Petri net models

Author(s):  
Mouhaned Gaied ◽  
Anis M’halla ◽  
Dimitri Lefebvre ◽  
Kamel Ben Othmen

This article is devoted to the modeling, performance evaluation and robust control of the railway transport network in Sahel Tunisia. The regular increase in the number of passengers makes the management of transportation systems more and more complex. Railway transport requires specific needs. Indeed, many decision and optimization problems occur from the planning phase to the implementation phase. Railway transport networks can be considered as discrete event systems with time constraints. The time factor is a critical parameter, since it includes schedules to be respected in order to avoid overlaps, delays and collisions between trains. The uncertainties affect the service and the availability of transportation resources and, consequently, the transport scheduling plan. Petri nets have been recognized as powerful modeling and analysis tools for discrete event systems with time constraints. Consequently, they are suitable for railway transport systems. In this article, stochastic P-time Petri nets are used for the railway transport networks in Sahel Tunisia. A global model is first detailed. Then, this model is used to analyze the network traffic and evaluate the performance of the system. Robustness again disturbances is introduced and a control strategy is developed to reduce the consequences of the disturbances in order to maintain the expected schedule.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Anis Mhalla ◽  
Mohanned Gaied

The importance of public transport systems continues to grow. These systems must respond to an increasing demand for population mobility and traffic disturbances. Rail transport networks can be considered as Discrete Event Systems (DES) with time constraints. The time factor is a critical parameter, since it includes dates to be respected in order to avoid overlaps, delays, and collisions between trains. P-time Petri Nets have been recognized as powerful modeling and analysis tools for railway transport systems. Temporal disturbances in these systems include railway infrastructure, traffic management, and disturbances (weather, obstacles on the tracks, malice, social movement, etc.). The developments presented in this paper are devoted to the modeling and the study of the robustness of the railway transport systems in order to evaluate the stability and the efficiency of these networks. In this study two robust control strategies towards time disturbances are presented. The first one consists of compensating the disturbance as soon as it is observed in order to avoid constraints violation. The second one allows generating, by the control, a temporal lag identical to the disturbance in order to avoid the death of marks on the levels of synchronization transitions of the P-time Petri net model.


2013 ◽  
Vol 43 (6) ◽  
pp. 1477-1485 ◽  
Author(s):  
Maria Paola Cabasino ◽  
Alessandro Giua ◽  
Andrea Paoli ◽  
Carla Seatzu

Sign in / Sign up

Export Citation Format

Share Document