transport systems
Recently Published Documents


TOTAL DOCUMENTS

7049
(FIVE YEARS 1985)

H-INDEX

118
(FIVE YEARS 12)

2023 ◽  
Vol 55 (1) ◽  
pp. 1-46
Author(s):  
Rodolfo Meneguette ◽  
Robson De Grande ◽  
Jo Ueyama ◽  
Geraldo P. Rocha Filho ◽  
Edmundo Madeira

Vehicular Edge Computing (VEC), based on the Edge Computing motivation and fundamentals, is a promising technology supporting Intelligent Transport Systems services, smart city applications, and urban computing. VEC can provide and manage computational resources closer to vehicles and end-users, providing access to services at lower latency and meeting the minimum execution requirements for each service type. This survey describes VEC’s concepts and technologies; we also present an overview of existing VEC architectures, discussing them and exemplifying them through layered designs. Besides, we describe the underlying vehicular communication in supporting resource allocation mechanisms. With the intent to overview the risks, breaches, and measures in VEC, we review related security approaches and methods. Finally, we conclude this survey work with an overview and study of VEC’s main challenges. Unlike other surveys in which they are focused on content caching and data offloading, this work proposes a taxonomy based on the architectures in which VEC serves as the central element. VEC supports such architectures in capturing and disseminating data and resources to offer services aimed at a smart city through their aggregation and the allocation in a secure manner.


2022 ◽  
Vol 14 (2) ◽  
pp. 954
Author(s):  
Jeffrey R. Kenworthy ◽  
Helena Svensson

Transport energy conservation research in urban transport systems dates back principally to the Organization of the Petroleum Exporting Countries’ (OPEC) “Arab Oil Embargo” (1973–1974) and the Iranian revolution (1979), when global oil supplies became threatened and costs rose steeply. Two subsequent Gulf Wars (1991 and 2003) highlighted the dangerous geo-political dimensions of Middle-Eastern oil. In latter times, the urgency to reduce global CO2 output to avoid catastrophic climate change has achieved great prominence. How to reduce passenger transport energy use therefore remains an important goal, which this paper pursues in ten Swedish cities, based on five scenarios: (1) increasing the relatively low public transport (PT) seat occupancy in each Swedish city to average European levels (buses 35%, light rail 48%, metro 60% and suburban rail 35%); (2) doubling existing PT seat occupancy in each Swedish city; (3) increasing existing car occupancy in each Swedish city by 10%; (4) decreasing existing energy use per car vehicle kilometer by 15%; (5) increasing existing modal split for daily trips by non-motorized modes to 50% in each city. A sixth “best-case scenario” is also explored by simultaneously combining scenarios 2 to 5. The data used in the paper come from systematic empirical research on each of the ten Swedish cities. When applied individually, scenario 2 is the most successful for reducing passenger transport energy use, scenarios 1 and 4 are next in magnitude and produce approximately equal energy savings, followed by scenario 5, with scenario 3 being the least successful. The best-case, combined scenario could save 1183 million liters of gasoline equivalent in the ten cities, representing almost a 60% saving over their existing 2015 total private passenger transport energy use and equivalent to the combined 2015 total annual private transport energy use of Stockholm, Malmö and Jönköping. Such findings also have important positive implications for the de-carbonization of cities. The policy implications of these findings and the strategies for increasing public transport, walking and cycling, boosting car occupancy and decreasing vehicular fuel consumption in Swedish cities are discussed.


2022 ◽  
Author(s):  
Marius Girtan ◽  
◽  
Valeriu Stelian Nițoi ◽  
Constantina Chiriac ◽  
◽  
...  

The paper brings to the fore the need for state support by making investments in railway infrastructure, in order to maintain and ensure the success of railway transport of trucks by introducing RO-LA transport in rail traffic. Using this mode of transport reduces the cost of maintaining road infrastructure, protects the environment, reduces fuel consumption, and reduces road traffic congestionRO-LA transport is an alternative solution to auto transport and contributes to the streamlining of traffic of goods and people.


2022 ◽  
Vol 12 ◽  
Author(s):  
Riccardo F. Romersi ◽  
Sascha C. T. Nicklisch

An organism’s diet is a major route of exposure to both beneficial nutrients and toxic environmental chemicals and natural products. The uptake of dietary xenobiotics in the intestine is prevented by transporters of the Solute Carrier (SLC) and ATP Binding Cassette (ABC) family. Several environmental chemicals and natural toxins have been identified to induce expression of these defense transporters in fish and aquatic invertebrates, indicating that they are substrates and can be eliminated. However, certain environmental chemicals, termed Transporter-Interfering Chemicals or TICs, have recently been shown to bind to and inhibit fish and mammalian P-glycoprotein (ABCB1), thereby sensitizing cells to toxic chemical accumulation. If and to what extent other xenobiotic defense or nutrient uptake transporters can also be inhibited by dietary TICs is still unknown. To date, most chemical-transporter interaction studies in aquatic organisms have focused on ABC-type transporters, while molecular interactions of xenobiotics with SLC-type transporters are poorly understood. In this perspective, we summarize current advances in the identification, localization, and functional analysis of protective MXR transporters and nutrient uptake systems in the digestive system of fish and aquatic invertebrates. We collate the existing literature data on chemically induced transporter gene expression and summarize the molecular interactions of xenobiotics with these transport systems. Our review emphasizes the need for standardized assays in a broader panel of commercially important fish and seafood species to better evaluate the effects of TIC and other xenobiotic interactions with physiological substrates and MXR transporters across the aquatic ecosystem and predict possible transfer to humans through consumption.


2022 ◽  
Vol 19 (4) ◽  
pp. 6-12
Author(s):  
P. A. Kozlov ◽  
S. P. Vakulenko ◽  
V. P. Kozlova ◽  
N. Yu. Evreenova

The methodology developed by the authors refers to designing, calculating, and optimising transport nodes based on the original systemic approach as a main method. The use of the methodology will make it possible to design transport nodes more rationally and to evaluate their development projects more correctly.A «system» is understood as a general natural form of structuring organised substance, which enables it to function stably in a changeable environment. The basic principles are formulated as follows: the system consists of elements, each of which is also a system; active self-maintenance is developed in the system, that is, active actions are counteracting external adverse influences; it is shown that self-maintenance is provided by adaptability, and in transport systems the self-maintenance is particularly provided by adaptive technology.A contradiction (a dialectical one) arises: on the one hand, the elements are independent systems that have their own system parameters and mechanisms for their active maintenance, and on the other hand, they are subordinate creatures capable of flexibly changing their work to maintain the parameters of the supersystem. It is necessary to find harmony between the levels of development of these opposite properties. Transport nodes are also considered from these systemic positions. Exposition of several definitions of nodes by leading national scientists is followed by a statement showing that they all contradict the new systemic approach.Suggested system definition of a node describes it as a set of stations. The authors also propose a new classification of transport nodes, formulate criteria for their rational design depending on the classes, and propose correct design and optimisation principles. 


Author(s):  
Dariusz Tłoczyński ◽  
Agnieszka Szmelter-Jarosz ◽  
Sebastian Susmarski

The article presents the results of a pilot study, namely a passenger survey on travel choices regarding commuting to the airport in one chosen location (Gdańsk, Poland). The study aimed at establishing which factors which influenced their travel time, assessment of travel time, choosing more or less sustainable transport mode, and also single-mode or multimodal travel. Research results show that choice of the means of transport influences travel time, that the highest travel times are generated by bus and car travel and that assessing the travel time as acceptable or not depends on travel time. However, the longer the travel time, the more likely was the passenger to accept it. What is more, it appeared that a few factors influence choosing a more sustainable transport mode: the purpose of the trip, the start of the trip to the airport, place of living, and job situation.


Author(s):  
Anand Balu Nellippallil ◽  
Parker R. Berthelson ◽  
Luke Peterson ◽  
Raj Prabhu

Abstract Government agencies, globally, strive to minimize the likelihood and frequency of human death and severe injury on road transport systems. From an engineering design standpoint, the minimization of these road accident effects on occupants becomes a critical design goal. This necessitates the quantification and management of injury risks on the human body in response to several vehicular impact variables and their associated uncertainties for different crash scenarios. In this paper, we present a decision-based, robust design framework to quantify and manage the impact-based injury risks on occupants for different computational model-based car crash scenarios. The key functionality offered is the designer's capability to conduct robust concept exploration focused on managing the selected impact variables and associated uncertainties, such that injury risks are controlled within acceptable levels. The framework's efficacy is tested for near-side impact scenarios with impact velocity and angle of impact as the critical variables of interest. Two injury criteria, namely, Head Injury Criterion (HIC) and Lateral Neck Injury Criteria (Lateral Nij), are selected to quantitatively measure the head and neck injury risks in each crash simulation. Using the framework, a robust design problem is formulated to determine the combination of impact variables that best satisfice the injury goals defined. The framework and associated design constructs are generic and support the formulation and decision-based robust concept exploration of similar problems involving models under uncertainty. Our focus in this paper is on the framework rather than the results per se.


2022 ◽  
Vol 1 (15) ◽  
pp. 155-159
Author(s):  
Ol'ga Lebedeva ◽  
Vasilisa Kuzminykh

The road network constitutes the main part of the transport system for both passenger and freight traffic. Achieving a sustainable road transport system including multimodal terminals, autonomous vehicles, intelligent transport systems, infrastructure are considered to be important design areas. The efficient use of the transport system is essential in terms of economic, environmental and social sustainability. Therefore, it is necessary to develop methods for optimizing the transportation process


2022 ◽  
Vol 23 (2) ◽  
pp. 760
Author(s):  
David Male ◽  
Radka Gromnicova

Nanoparticles with oligonucleotides bound to the outside or incorporated into the matrix can be used for gene editing or to modulate gene expression in the CNS. These nanocarriers are usually optimised for transfection of neurons or glia. They can also facilitate transcytosis across the brain endothelium to circumvent the blood-brain barrier. This review examines the different formulations of nanocarriers and their oligonucleotide cargoes, in relation to their ability to enter the brain and modulate gene expression or disease. The size of the nanocarrier is critical in determining the rate of clearance from the plasma as well as the intracellular routes of endothelial transcytosis. The surface charge is important in determining how it interacts with the endothelium and the target cell. The structure of the oligonucleotide affects its stability and rate of degradation, while the chemical formulation of the nanocarrier primarily controls the location and rate of cargo release. Due to the major anatomical differences between humans and animal models of disease, successful gene therapy with oligonucleotides in humans has required intrathecal injection. In animal models, some progress has been made with intraventricular or intravenous injection of oligonucleotides on nanocarriers. However, getting significant amounts of nanocarriers across the blood-brain barrier in humans will likely require targeting endothelial solute carriers or vesicular transport systems.


Sign in / Sign up

Export Citation Format

Share Document