scholarly journals Gait Training Using a Wearable Robotic Device for Non-Traumatic Spinal Cord Injury: A Case Report

2020 ◽  
Vol 11 ◽  
pp. 215145932095696
Author(s):  
Kenichi Yoshikawa ◽  
Hirotaka Mutsuzaki ◽  
Kazunori Koseki ◽  
Yusuke Endo ◽  
Yuko Hashizume ◽  
...  

Introduction: We aimed to report the clinical evaluation results of gait training with the Honda Walking Assist Device® (HWAT) in a patient with spinal cord injury (SCI). Patients and Methods: A 63-year-old male with SCI (grade D on the American Spinal Injury Association Impairment Scale) underwent 20 HWAT sessions over 4 weeks. The self-selected walking speed (SWS), mean step length, cadence, 6-minute walking test (6MWT), Walking Index for SCI score, SCI Functional Ambulation Inventory gait score, American Spinal Injury Association Impairment Scale grade, neurological level, upper and lower extremity motor scores, modified Ashworth Scale, Penn Spasm Frequency Scale, and Spinal Cord Independence Measure version III were measured on admission, at the start of HWAT, at 2 and 4 weeks post-HWAT, and at discharge. Three-dimensional kinematic gait analysis and electromyographic assessments were performed before and after HWAT. Results: The patient safely completed 20 HWAT sessions. We found improvements above the clinically meaningful difference in SWS and 6MWT as well as increased hip extension, ankle plantar- and dorsi-flexion range of motion and increased hip extensor, abductor, adductor, and ankle plantar flexor muscle activity. Discussion: The SWS improved more markedly during the HWAT intervention, exceeding the minimal clinically important difference (0.10 to 0.15 m/s) in walking speed for people with SCI until discharge. Moreover, the 6MWT results at 2 weeks after the start of HWAT exceeded the cutoff value (472.5 m) for community ambulation and remained at a similar value at discharge. Conclusion: The walking distance (6MWT) and the walking speed (SWS) both demonstrated clinically important improvements following 20 treatment sessions which included HWAT.

2005 ◽  
Vol 19 (4) ◽  
pp. 332-337 ◽  
Author(s):  
Figen Yilmaz ◽  
Fusun Sahin ◽  
Semra Aktug ◽  
Banu Kuran ◽  
Adem Yilmaz

Objective. The aim of this study was to evaluate the motor, sensory, and functional recovery in patients with spinal cord injury (SCI). Methods. Forty-one patients with SCI participated in this study. Twenty patients were evaluated after discharge. Each patient was evaluated by the American Spinal Injury Association (ASIA) impairment scale and the Functional Independence Measure (FIM) at admission, before discharge, and at least at 6 months after discharge. Friedman, Dunn, and Mann-Whitney U tests were used for statistical analysis. Results. There were 17 male and 3 female patients. Seven patients had complete SCI, and 13 patients had incomplete SCI. The evaluation of motor, sensory, and FIM scores at admission showed significant improvement in all of the patients during the follow-up period (P < 0.0001). Five incompletely injured cases improved with regard to ASIA staging. Motor and FIM scores significantly increased at follow-up for converted and unconverted patients. All parameters increased at follow-up in patients who were complete and incomplete. Motor scores significantly increased at discharge and at follow-up. FIM scores also increased significantly at follow-up in incomplete patients. Conclusion. Motor, sensory, and FIM scores increased in patients with SCI after a follow-up period of 18 months. Improvement to a higher ASIA stage could be accomplished by 25% of the patients. Although both complete and incomplete patients recovered significantly at the follow-up period, only incompletely injured cases could convert to a higher ASIA stage.


Neurosurgery ◽  
2016 ◽  
Vol 79 (5) ◽  
pp. 708-714 ◽  
Author(s):  
William J. Readdy ◽  
Rajiv Saigal ◽  
William D. Whetstone ◽  
Anthony N. Mefford ◽  
Adam R. Ferguson ◽  
...  

Abstract BACKGROUND: Increased spinal cord perfusion and blood pressure goals have been recommended for spinal cord injury (SCI). Penetrating SCI is associated with poor prognosis, but there is a paucity of literature examining the role of vasopressor administration for the maintenance of mean arterial pressure (MAP) goals in this patient population. OBJECTIVE: To elucidate this topic and to determine the efficacy of vasopressor administration in penetrating SCI by examining a case series of consecutive penetrating SCIs. METHODS: We reviewed consecutive patients with complete penetrating SCI who met inclusion and exclusion criteria, including the administration of vasopressors to maintain MAP goals. We identified 14 patients with complete penetrating SCIs with an admission American Spinal Injury Association grade of A from 2005 to 2011. The neurological recovery, complications, interventions, and vasopressor administration strategies were reviewed and compared with those of a cohort with complete blunt SCI. RESULTS: In our patient population, only 1 patient with penetrating SCI (7.1%) experienced neurological recovery, as determined by improvement in the American Spinal Injury Association grade, despite the administration of vasopressors for supraphysiological MAP goals for an average of 101.07 ± 34.96 hours. Furthermore, 71.43% of patients with penetrating SCI treated with vasopressors experienced associated cardiogenic complications. CONCLUSION: Given the decreased likelihood of neurological improvement in penetrating injuries, it may be important to re-examine intervention strategies in this population. Specifically, the use of vasopressors, in particular dopamine, with their associated complications is more likely to cause complications than to result in neurological improvement. Our experience shows that patients with acute penetrating SCI are unlikely to recover, despite aggressive cardiopulmonary management.


2001 ◽  
Vol 81 (12) ◽  
pp. 1904-1911 ◽  
Author(s):  
Ray D de Leon ◽  
Roland R Roy ◽  
V Reggie Edgerton

Abstract The recovery of stepping ability following a spinal cord injury may be achieved by restoring anatomical connectivity within the spinal cord. However, studies of locomotor recovery in animals with complete spinal cord transection suggest that the adult mammalian spinal cord can acquire the ability to generate stepping after all descending input is eliminated and in the absence of neuronal regeneration. Moreover, rehabilitative gait training has been shown to play a crucial role in teaching existing spinal pathways to generate locomotion and appropriately respond to sensory feedback. This brief review presents evidence that neural networks in the mammalian spinal cord can be modulated pharmacologically and/or with task-specific behavioral training to generate weight-bearing stepping after a spinal injury. Further, the role that spinal learning can play in the management of humans with spinal cord injury is discussed in relation to interventions that are designed primarily to enhance neuronal regeneration.


2016 ◽  
Vol 40 (6) ◽  
pp. 696-702 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Mohammad Samadian ◽  
Mahmood Bahramizadeh ◽  
Monireh Ahmadi Bani ◽  
Masoud Gharib ◽  
...  

Background:People with spinal cord injury walk with a flexed trunk when using reciprocating gait orthoses for walking. Reduction in trunk flexion during ambulation has been shown to improve gait parameters for reciprocating gait orthosis users.Objective:The aim of this study was to investigate the effect on energy expenditure when spinal cord injury patients ambulate with an advanced reciprocating gait orthosis while wearing a thoracolumbosacral orthosis to provide trunk extension.Study design:Quasi experimental study.Methods:Four patients with spinal cord injury were fitted with an advanced reciprocating gait orthosis after completing a specific gait training program. Patients walked along a flat walkway using the advanced reciprocating gait orthosis as a control condition and also while additionally wearing a thoracolumbosacral orthosis at their self-selected walking speed. A stopwatch and a polar heart rate monitor were used to measure walking speed and heart rate.Results:Walking speed, the distance walked, and the physiological cost index all improved when walking with the advanced reciprocating gait orthosis/thoracolumbosacral orthosis test condition compared to walking with no thoracolumbosacral orthosis in situ.Conclusion:Spinal cord injury patients can improve their walking speed, walking distance, and physiological cost index when wearing a thoracolumbosacral orthosis in conjunction with an advanced reciprocating gait orthosis, which may be attributed to the trunk extension provided by the thoracolumbosacral orthosis.Clinical relevanceIt is concluded that wearing thoracolumbosacral orthosis in association with an advanced reciprocating gait orthosis could be an effective alternative in rehabilitation for thoracic level of paraplegic patients to promote their health and well-being.


2012 ◽  
Vol 70 (11) ◽  
pp. 880-884 ◽  
Author(s):  
Susana Cristina Lerosa Telles ◽  
Rosana S. Cardoso Alves ◽  
Gerson Chadi

The primary trigger to periodic limb movement (PLM) during sleep is still unknown. Its association with the restless legs syndrome (RLS) is established in humans and was reported in spinal cord injury (SCI) patients classified by the American Spinal Injury Association (ASIA) as A. Its pathogenesis has not been completely unraveled, though recent advances might enhance our knowledge about those malfunctions. PLM association with central pattern generator (CPG) is one of the possible pathologic mechanisms involved. This article reviewed the advances in PLM and RLS genetics, the evolution of CPG functioning, and the neurotransmitters involved in CPG, PLM and RLS. We have proposed that SCI might be a trigger to develop PLM.


2014 ◽  
Vol 39 (4) ◽  
pp. 286-292 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Masoud Gharib ◽  
Stephen William Hutchins ◽  
Monireh Ahmadi Bani ◽  
Sarah Curran ◽  
...  

Background:Spinal cord injury patients walk with a flexed trunk when using reciprocating gait orthoses. Reduction of trunk flexion during ambulation may produce an improvement in gait parameters for reciprocating gait orthosis users.Objectives:To investigate the effect on kinematics and temporal–spatial parameters when spinal cord injury patients ambulate with an advanced reciprocating gait orthosis while wearing a thoracolumbosacral orthosis to provide trunk extension.Study design:Comparative study between before and after use o thoracolumbosacral orthosis with the advanced reciprocating gait orthoses.Methods:Four patients with spinal cord injury were fitted with an advanced reciprocating gait orthosis and also wore a thoracolumbosacral orthosis. Patients walked along a flat walkway either with or without the thoracolumbosacral orthosis at their self-selected walking speed. Temporal–spatial parameters and lower limb kinematics were analyzed.Results:Mean walking speed, step length, and cadence all improved when walking with the thoracolumbosacral orthosis donned compared to the trunk support offered by the advanced reciprocating gait orthosis. Hip and ankle joint ranges of motion were significantly increased when wearing the thoracolumbosacral orthosis during ambulation.Conclusion:Using an advanced reciprocating gait orthosis when wearing a thoracolumbosacral orthosis can improve walking speed and the step length of walking as compared with walking with an advanced reciprocating gait orthosis, probably due to the extended position of the trunk.Clinical relevanceDonning the thoracolumbosacral orthosis produced a relatively extended trunk position in the advanced reciprocating gait orthosis for all the patients included in the study, which resulted in improved gait parameters.


Sign in / Sign up

Export Citation Format

Share Document