The use of Matlab to compute the total vertex irregularity strength of generalized uniform cactus chain graphs with pendant vertices

2021 ◽  
pp. 85-92
Author(s):  
I. Rosyida
2020 ◽  
Vol 4 (1) ◽  
pp. 53 ◽  
Author(s):  
Isnaini Rosyida ◽  
Diari Indriati

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Given graph </span><em>G</em><span>(</span><span><em>V</em>,<em>E</em></span><span>)</span><span>. We use the notion of total </span><em>k</em><span>-labeling which is edge irregular. The notion </span>of total edge irregularity strength (tes) of graph <em>G</em> means the minimum integer <em>k</em> used in the edge irregular total k-labeling of <em>G</em>. A cactus graph <em>G</em> is a connected graph where no edge lies in more than one cycle. A cactus graph consisting of some blocks where each block is cycle <em>C<sub>n</sub></em> with same size <em>n</em> is named an <em>n</em>-uniform cactus graph. If each cycle of the cactus graph has no more than two cut-vertices and each cut-vertex is shared by exactly two cycles, then <em>G</em> is called <em>n</em>-uniform cactus chain graph. In this paper, we determine tes of n-uniform cactus chain graphs <em>C</em>(<em>C<sub>n</sub><sup>r</sup></em>) of length <em>r</em> for some <em>n</em> ≡ 0 mod 3. We also investigate tes of related chain graphs, i.e. tadpole chain graphs <em>T<sub>r</sub></em>(4,<em>n</em>) and <em>T<sub>r</sub></em>(5,<em>n</em>) of length <em>r</em>. Our results are as follows: tes(<em>C</em>(<em>C<sub>n</sub><sup>r</sup></em>)) = ⌈(<em>nr</em> + 2)/3⌉ ; tes(<em>T<sub>r</sub></em>(4,<em>n</em>)) = ⌈((5+<em>n</em>)<em>r</em>+2)/3⌉ ; tes(<em>T<sub>r</sub></em>(5,<em>n</em>)) = ⌈((5+<em>n</em>)<em>r</em>+2)/3⌉.</p></div></div></div>


2020 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
I Nengah Suparta ◽  
I Gusti Putu Suharta

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Let </span><em>G</em><span>(</span><span><em>V</em>, <em>E</em></span><span>) </span><span>be a finite simple graph and </span><span>k </span><span>be some positive integer. A vertex </span><em>k</em><span>-labeling of graph </span><em>G</em>(<em>V,E</em>), Φ : <em>V</em> → {1,2,..., <em>k</em>}, is called edge irregular <em>k</em>-labeling if the edge weights of any two different edges in <em>G</em> are distinct, where the edge weight of <em>e</em> = <em>xy</em> ∈ <em>E</em>(<em>G</em>), w<sub>Φ</sub>(e), is defined as <em>w</em><sub>Φ</sub>(<em>e</em>) = Φ(<em>x</em>) + Φ(<em>y</em>). The edge irregularity strength for graph G is the minimum value of k such that Φ is irregular edge <em>k</em>-labeling for <em>G</em>. In this note we derive the edge irregularity strength of chain graphs <em>mK</em><sub>3</sub>−path for m ≢ 3 (mod4) and <em>C</em>[<em>C<sub>n</sub></em><sup>(<em>m</em>)</sup>] for all positive integers <em>n</em> ≡ 0 (mod 4) 3<em>n</em> and <em>m</em>. We also propose bounds for the edge irregularity strength of join graph <em>P<sub>m</sub></em> + <em>Ǩ<sub>n</sub></em> for all integers <em>m, n</em> ≥ 3.</p></div></div></div>


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 605
Author(s):  
Martin Bača ◽  
Zuzana Kimáková ◽  
Marcela Lascsáková ◽  
Andrea Semaničová-Feňovčíková

For a simple graph G with no isolated edges and at most, one isolated vertex, a labeling φ:E(G)→{1,2,…,k} of positive integers to the edges of G is called irregular if the weights of the vertices, defined as wtφ(v)=∑u∈N(v)φ(uv), are all different. The irregularity strength of a graph G is known as the maximal integer k, minimized over all irregular labelings, and is set to ∞ if no such labeling exists. In this paper, we determine the exact value of the irregularity strength and the modular irregularity strength of fan graphs.


2010 ◽  
Vol 158 (11) ◽  
pp. 1189-1194 ◽  
Author(s):  
Michael Ferrara ◽  
Ronald Gould ◽  
Michał Karoński ◽  
Florian Pfender

Sign in / Sign up

Export Citation Format

Share Document