Trichoderma spp.: Identification and Characterization for Pathogenic Control and its Potential Application

Author(s):  
Vipul Kumar ◽  
Deepak Kumar Verma ◽  
Abhay K. Pandey ◽  
Shikha Srivastava
2021 ◽  
Author(s):  
Jheng-Hua Huang ◽  
Feng-Jin Zeng ◽  
Jhe-Fu Guo ◽  
Jian-Yuan Huang ◽  
Hua-Chian Lin ◽  
...  

Abstract Background: N -acetylglucosaminidase (NAGase) could liberate N -acetylglucosamine (GlcNAc) from GlcNAc-containing oligosaccharides. Trichoderma spp. is an important source of chitinase, particularly NAGase for industrial use. nag1 and nag2 genes encoding NAGase , are found in the genome in Trichoderma spp. The deduced Nag1 and Nag2 shares ~55% homology in Trichoderma virens. Most studies were focus on Nag1 and nag1 previously. Results: The native NAGase (TvmNAG2) was purified to homogeneity with molecular mass of ~68 kDa on SDS-PAGE analysis, and identified as Nag2 by MALDI/MS analysis from an isolate T. virens strain mango. RT-PCR analyses revealed that only nag2 gene was expressed in liquid culture of T. virens , while both of nag1 and nag2 were expressed in T. virens cultured on the plates. TvmNAG2 was thermally stable up to 60 o C for 2 h, and the optimal pH and temperature were 5.0 and 60-65 o C, respectively, using p -nitrophenyl- N -acetyl- β -D-glucosaminide ( p NP-NAG) as substrate. Using colloidal chitin as substrate, the end product catalyzed by TvmNAG2 was GlcNAc, based on HPLC and TLC analyses. The optimal temperature for TvmNAG2 to produce GlcNAc was 40 o C. TvmNAG2 possesses antifungal activity, inhibiting the mycelium growth of Sclerotium rolfsii . And it was resistant to the proteolysis by papain and trypsin. Conclusions: The native Nag2, TvmNAG2 was purified and identified from T. virens strain mango, as well as enzymatic properties. To our knowledge, it is the first report with the properties of native Trichoderma Nag2.


2017 ◽  
Vol 124 (3) ◽  
pp. 277-282 ◽  
Author(s):  
Tatsuhiko Nagao ◽  
Ayako Kumabe ◽  
Fumika Komatsu ◽  
Hisashi Yagi ◽  
Hirokazu Suzuki ◽  
...  

2009 ◽  
Vol 00 (00) ◽  
pp. 090513010017019-7
Author(s):  
Biagio Solarino ◽  
Giancarlo Di Vella ◽  
Thea Magrone ◽  
Felicita Jirillo ◽  
Angela Tafaro ◽  
...  

1966 ◽  
Vol 15 (01/02) ◽  
pp. 252-272
Author(s):  
K. M Moser ◽  
Mary Belle Frey

Summary1. Caseinolytic and fibrinolytic systems for assay of plasmin in fibrinolytic agents are described which are based upon the determinations of AE/min during the linear portion of the casein-plasmin and fibrin-plasmin reaction curves respectively. A " caseinolytic-rate " unit and “fibrinolytic-rate " unit of ÄE/min × 103 during the linear portion of the respective curves are proposed.2. Data are presented indicating that a reliably linear relationship exists between plasmin concentration and these caseinolytic - and fibrinolytic-rate units.3. Data comparing results obtained with the proposed assay techniques and previously-used casein and fibrinolytic techniques are presented.4. Formulae by which caseinolytic-rate and fibrinolytic-rate units can be roughly converted into Remmert-Cohen type plasmin units are offered.5. The theoretical and practical problems which have influenced development of assays for fibrinolytic components are discussed.6. The advantages of the plasmin “rate unit” techniques vis a vis existing assays are delineated.7. The potential application of the techniques to measurements other than the plasmin content of fibrinolytic agents is discussed.


Sign in / Sign up

Export Citation Format

Share Document