acidithiobacillus ferrooxidans
Recently Published Documents


TOTAL DOCUMENTS

785
(FIVE YEARS 127)

H-INDEX

49
(FIVE YEARS 7)

Author(s):  
Tatsuhiro Kato ◽  
Yong Guo ◽  
Reiko Fujimura ◽  
Takamichi Nakamura ◽  
Tomoyasu Nishizawa ◽  
...  

The genome sequence of Acidithiobacillus ferrooxidans strain NFP31, which is a chemolithoautotrophic iron-oxidizing bacterium that inhabits acidified volcanic deposits on Mount Oyama, Miyake Island (Miyake-jima), Japan, was determined to identify the genetic characteristics associated with pioneer microbes in newly placed pyroclastic deposits.


2021 ◽  
Vol 514 ◽  
pp. 230586
Author(s):  
Ganesan Sathiyanarayanan ◽  
Nicolas Chabert ◽  
Joris Tulumello ◽  
Wafa Achouak

Mining ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 335-350
Author(s):  
Andrea E. Jiménez-Paredes ◽  
Elvia F. Alfaro-Saldaña ◽  
Araceli Hernández-Sánchez ◽  
J. Viridiana García-Meza

Pyrite bio-oxidation by chemolithotrophic acidophile bacteria has been applied in the mining industry to bioleach metals or to remove pyritic sulfur from coal. In this process, it is desirable to use autochthonous and already adapted bacteria isolated directly from the mining sites where biomining will be applied. Bacteria present in the remnant solution from a mining company were identified through cloning techniques. For that purpose, we extracted total RNA and performed reverse transcription using a novel pair of primers designed from a small region of the 16S gene (V1–V3) that contains the greatest intraspecies diversity. After cloning, a high proportion of individuals of the strains ATCC-23270 (NR_074193.1 and NR_041888.1) and DQ321746.1 of the well-known species Acidithiobacillus ferrooxidans were found, as well as two new wild strains of A. ferrooxidans. This result showed that the acidic remnant solution comprises a metapopulation. We assayed these strains to produce bioferric flocculant to enhance the subsequent pyrite bio-oxidation, applying two-stage chemical–bacterial oxidation. It was shown that the strains were already adapted to a high concentration of endogenous Fe2+ (up to 20 g·L−1), increasing the volumetric productivity of the bioferric flocculant. Thus, no preadaptation of the community was required. We detected Au and Ag particles originally occluded in the old pyritic flotation tailings assayed, but the extraction of Au and Ag by cyanidation resulted in ca. 30.5% Au and 57.9% Ag.


2021 ◽  
Vol 9 (12) ◽  
pp. 2416
Author(s):  
Anna H. Kaksonen ◽  
Xiao Deng ◽  
Christina Morris ◽  
Himel Nahreen Khaleque ◽  
Luis Zea ◽  
...  

The biomining microbes which extract metals from ores that have been applied in mining processes worldwide hold potential for harnessing space resources. Their cell growth and ability to extract metals from extraterrestrial minerals under microgravity environments, however, remains largely unknown. The present study used the model biomining bacterium Acidithiobacillus ferrooxidans to extract metals from lunar and Martian regolith simulants cultivated in a rotating clinostat with matched controls grown under the influence of terrestrial gravity. Analyses included assessments of final cell count, size, morphology, and soluble metal concentrations. Under Earth gravity, with the addition of Fe3+ and H2/CO2, A. ferrooxidans grew in the presence of regolith simulants to a final cell density comparable to controls without regoliths. The simulated microgravity appeared to enable cells to grow to a higher cell density in the presence of lunar regolith simulants. Clinostat cultures of A. ferrooxidans solubilised higher amounts of Si, Mn and Mg from lunar and Martian regolith simulants than abiotic controls. Electron microscopy observations revealed that microgravity stimulated the biosynthesis of intracellular nanoparticles (most likely magnetite) in anaerobically grown A. ferrooxidans cells. These results suggested that A. ferrooxidans has the potential for metal bioleaching and the production of useful nanoparticles in space.


Author(s):  
Yangdan Zhan ◽  
Xu Shen ◽  
Mao Chen ◽  
Kaizhi Yang ◽  
Hongguan Xie

Sign in / Sign up

Export Citation Format

Share Document