scholarly journals Diffusion limits of the random walk Metropolis algorithm in high dimensions

2012 ◽  
Vol 22 (3) ◽  
pp. 881-930 ◽  
Author(s):  
Jonathan C. Mattingly ◽  
Natesh S. Pillai ◽  
Andrew M. Stuart
2018 ◽  
Vol 28 (5) ◽  
pp. 2966-3001 ◽  
Author(s):  
Alexandros Beskos ◽  
Gareth Roberts ◽  
Alexandre Thiery ◽  
Natesh Pillai

2003 ◽  
Vol 40 (1) ◽  
pp. 123-146 ◽  
Author(s):  
G. Fort ◽  
E. Moulines ◽  
G. O. Roberts ◽  
J. S. Rosenthal

In this paper, we consider the random-scan symmetric random walk Metropolis algorithm (RSM) on ℝd. This algorithm performs a Metropolis step on just one coordinate at a time (as opposed to the full-dimensional symmetric random walk Metropolis algorithm, which proposes a transition on all coordinates at once). We present various sufficient conditions implying V-uniform ergodicity of the RSM when the target density decreases either subexponentially or exponentially in the tails.


2003 ◽  
Vol 40 (01) ◽  
pp. 123-146 ◽  
Author(s):  
G. Fort ◽  
E. Moulines ◽  
G. O. Roberts ◽  
J. S. Rosenthal

In this paper, we consider the random-scan symmetric random walk Metropolis algorithm (RSM) on ℝ d . This algorithm performs a Metropolis step on just one coordinate at a time (as opposed to the full-dimensional symmetric random walk Metropolis algorithm, which proposes a transition on all coordinates at once). We present various sufficient conditions implying V-uniform ergodicity of the RSM when the target density decreases either subexponentially or exponentially in the tails.


2018 ◽  
Vol 55 (4) ◽  
pp. 1186-1202
Author(s):  
Daniel Rudolf ◽  
Mario Ullrich

Abstract Different Markov chains can be used for approximate sampling of a distribution given by an unnormalized density function with respect to the Lebesgue measure. The hit-and-run, (hybrid) slice sampler, and random walk Metropolis algorithm are popular tools to simulate such Markov chains. We develop a general approach to compare the efficiency of these sampling procedures by the use of a partial ordering of their Markov operators, the covariance ordering. In particular, we show that the hit-and-run and the simple slice sampler are more efficient than a hybrid slice sampler based on hit-and-run, which, itself, is more efficient than a (lazy) random walk Metropolis algorithm.


Sign in / Sign up

Export Citation Format

Share Document