diffusion limit
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 104)

H-INDEX

36
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Christoph von Ballmoos ◽  
Abbas Abou-Hamdan ◽  
Roman Mahler ◽  
Philipp Grossenbacher ◽  
Olivier Biner ◽  
...  

The superoxide anion - molecular oxygen reduced by a single electron - is produced in large amounts by enzymatic and adventitious reactions and can perform a range of cellular functions, including bacterial warfare and iron uptake, signalling and host immune response in eukaryotes. However, it also serves as precursor for more deleterious species such as the hydroxyl anion or peroxynitrite and therefore, cellular defense mechanisms for superoxide neutralization have evolved. In addition to the soluble proteins superoxide dismutase and superoxide reductase, recently the membrane embedded diheme cytochrome b561 (CybB) from E. coli has been proposed to act as a superoxide:quinone oxidoreductase. Here, we confirm superoxide and cellular ubiquinones or menaquinones as natural substrates and show that quinone binding to the enzyme accelerates the reaction with superoxide. The reactivity of the substrates is in accordance with the here determined midpoint potential of the two b hemes (+48 and -23 mV / NHE). Our data suggest that the enzyme can work near the diffusion limit in the forward direction and can also catalyse the reverse reaction efficiently under physiological conditions. The data is discussed in context of described cytochrome b561 proteins and potential physiological roles of CybB.


2021 ◽  
Vol 62 (10) ◽  
pp. 101505
Author(s):  
Claude Bardos ◽  
Nicolas Besse

2021 ◽  
Author(s):  
Sergei Grebenyuk ◽  
Abdel Rahman Abdel Fattah ◽  
Gregorius Rustandi ◽  
Manoj Kumar ◽  
Burak Toprakhisar ◽  
...  

Abstract The vascularization of engineered tissues and organoids has remained a major unresolved challenge in regenerative medicine. While multiple approaches have been developed to vascularize in vitro tissues, it has thus far not been possible to generate sufficiently dense networks of small-scale vessels to perfuse large de novo tissues. Here, we achieve the perfusion of multi-mm3 tissue constructs by generating networks of synthetic capillary-scale 3D vessels. Our 3D soft microfluidic strategy is uniquely enabled by a 3D-printable 2-photon-polymerizable hydrogel formulation, which allows for precise microvessel printing at scales below the diffusion limit of living tissues. We demonstrate that these large-scale engineered tissues are viable, proliferative and exhibit complex morphogenesis during long-term in-vitro culture, while avoiding hypoxia and necrosis. We show by scRNAseq and immunohistochemistry that neural differentiation is significantly accelerated in perfused neural constructs. Additionally, we illustrate the versatility of this platform by demonstrating long-term perfusion of developing liver tissue. This fully synthetic vascularization platform opens the door to the generation of human tissue models at unprecedented scale and complexity.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 356
Author(s):  
Xiaofei Luo ◽  
Jiaying Xiao ◽  
Congcong Wang ◽  
Bo Wang

Photoacoustic computed tomography (PACT) is a fast-developing imaging technique, which can provide structural and functional information in biological tissues with high-resolution beyond the depth of the optical diffusion limit. However, the most current PACT reconstruction method generally employs a point detector assumption, whereas in most PAT systems with circular or spherical scanning modes, the transducer is mostly flat and with a finite size. This model mismatch leads to a notable deterioration in the lateral direction in regions far from the rotation center, which is known as the “finite aperture effect”. In this work, we propose to compensate a novel Back-projection (BP) method based on the transducer’s spatial impulse response (SIR) for fast correction of the “finite aperture effect”. The SIR accounts for the waveform change of the transducer for an arbitrary point source due to the geometry of the detection surface. Simulation results showed that the proposed SIR-BP method can effectively improve the lateral resolution and signal to noise ratio (SNR) in the off-center regions. For a target 4.5 mm far from the rotation center, this new method improved the lateral resolution about five times along with a 7 dB increase in the SNR. Experimental results also showed that this SIR-BP method can well restore the image angular blur to recover small structures, as demonstrated by the imaging of leaf veins. This new method offers a valuable alternative to the conventional BP method, and can guide the design of PAT systems based on circular/spherical scan.


2021 ◽  
Author(s):  
Sergei Grebeniuk ◽  
Abdel Rahman Abdel Fattah ◽  
Gregorius Rustandi ◽  
Manoj Kumar ◽  
Burak Toprakhisar ◽  
...  

The vascularization of engineered tissues and organoids has remained a major unresolved challenge in regenerative medicine. While multiple approaches have been developed to vascularize in vitro tissues, it has thus far not been possible to generate sufficiently dense networks of small-scale vessels to perfuse large de novo tissues. Here, we achieve the perfusion of multi-mm3 tissue constructs by generating networks of synthetic capillary-scale 3D vessels. Our 3D soft microfluidic strategy is uniquely enabled by a 3D-printable 2-photon-polymerizable hydrogel formulation, which allows for precise microvessel printing at scales below the diffusion limit of living tissues. We demonstrate that these large-scale engineered tissues are viable, proliferative and exhibit complex morphogenesis during long-term in-vitro culture, while avoiding hypoxia and necrosis. We show by scRNAseq and immunohistochemistry that neural differentiation is significantly accelerated in perfused neural constructs. Additionally, we illustrate the versatility of this platform by demonstrating long-term perfusion of developing liver tissue. This fully synthetic vascularization platform opens the door to the generation of human tissue models at unprecedented scale and complexity.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1068
Author(s):  
Shiling Liang ◽  
Paolo De Los Rios ◽  
Daniel Maria Busiello

When exposed to a thermal gradient, reaction networks can convert thermal energy into the chemical selection of states that would be unfavourable at equilibrium. The kinetics of reaction paths, and thus how fast they dissipate available energy, might be dominant in dictating the stationary populations of all chemical states out of equilibrium. This phenomenology has been theoretically explored mainly in the infinite diffusion limit. Here, we show that the regime in which the diffusion rate is finite, and also slower than some chemical reactions, might bring about interesting features, such as the maximisation of selection or the switch of the selected state at stationarity. We introduce a framework, rooted in a time-scale separation analysis, which is able to capture leading non-equilibrium features using only equilibrium arguments under well-defined conditions. In particular, it is possible to identify fast-dissipation sub-networks of reactions whose Boltzmann equilibrium dominates the steady-state of the entire system as a whole. Finally, we also show that the dissipated heat (and so the entropy production) can be estimated, under some approximations, through the heat capacity of fast-dissipation sub-networks. This work provides a tool to develop an intuitive equilibrium-based grasp on complex non-isothermal reaction networks, which are important paradigms to understand the emergence of complex structures from basic building blocks.


Author(s):  
Jae Yong Lee ◽  
Jin Woo Jang ◽  
Hyung Ju Hwang

The model reduction of a mesoscopic kinetic dynamics to a macroscopic continuum dynamics has been one of the fundamental questions in mathematical physics since Hilbert's time. In this paper, we consider a diagram of the diffusion limit from the Vlasov-Poisson-Fokker-Planck (VPFP) system on a bounded interval with the specular reflection boundary condition to the Poisson-Nernst–Planck (PNP) system with the no-flux boundary condition. We provide a Deep Learning algorithm to simulate the VPFP system and the PNP system by computing the time-asymptotic behaviors of the solution and the physical quantities. We analyze the convergence of the neural network solution of the VPFP system to that of the PNP system via the Asymptotic-Preserving (AP) scheme. Also, we provide several theoretical evidence that the Deep Neural Network (DNN) solutions to the VPFP and the PNP systems converge to the a priori classical solutions of each system if the total loss function vanishes.


Sign in / Sign up

Export Citation Format

Share Document