partial ordering
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 52)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Roel van den Broek ◽  
Han Hoogeveen ◽  
Marjan van den Akker ◽  
Bob Huisman

In this paper we consider the train unit shunting problem extended with service task scheduling. This problem originates from Dutch Railways, which is the main railway operator in the Netherlands. Its urgency stems from the upcoming expansion of the rolling stock fleet needed to handle the ever-increasing number of passengers. The problem consists of matching train units arriving on a shunting yard to departing trains, scheduling service tasks such as cleaning and maintenance on the available resources, and parking the trains on the available tracks such that the shunting yard can operate conflict-free. These different aspects lead to a computationally extremely difficult problem, which combines several well-known NP-hard problems. In this paper, we present the first solution method covering all aspects of the shunting and scheduling problem. We describe a partial order schedule representation that captures the full problem, and we present a local search algorithm that utilizes the partial ordering. The proposed solution method is compared with an existing mixed integer linear program in a computational study on realistic instances provided by Dutch Railways. We show that our local search algorithm is the first method to solve real-world problem instances of the complete shunting and scheduling problem. It even outperforms current algorithms when the train unit shunting problem is considered in isolation, that is, without service tasks. Although our method was developed for the case of the Dutch Railways, it is applicable to any shunting yard or service location, irrespective of its layout, that uses self-propelling train units and that does not have to handle passing trains.


2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-30
Author(s):  
Son Tuan Vu ◽  
Albert Cohen ◽  
Arnaud De Grandmaison ◽  
Christophe Guillon ◽  
Karine Heydemann

Software protections against side-channel and physical attacks are essential to the development of secure applications. Such protections are meaningful at machine code or micro-architectural level, but they typically do not carry observable semantics at source level. This renders them susceptible to miscompilation, and security engineers embed input/output side-effects to prevent optimizing compilers from altering them. Yet these side-effects are error-prone and compiler-dependent. The current practice involves analyzing the generated machine code to make sure security or privacy properties are still enforced. These side-effects may also be too expensive in fine-grained protections such as control-flow integrity. We introduce observations of the program state that are intrinsic to the correct execution of security protections, along with means to specify and preserve observations across the compilation flow. Such observations complement the input/output semantics-preservation contract of compilers. We introduce an opacification mechanism to preserve and enforce a partial ordering of observations. This approach is compatible with a production compiler and does not incur any modification to its optimization passes. We validate the effectiveness and performance of our approach on a range of benchmarks, expressing the secure compilation of these applications in terms of observations to be made at specific program points.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen Chen ◽  
Zhenzhen Feng ◽  
Honghao Yao ◽  
Feng Cao ◽  
Bing-Hua Lei ◽  
...  

AbstractThe Zintl thermoelectric phase Eu2ZnSb2 has a remarkable combination of high mobility and low thermal conductivity that leads to good thermoelectric performance. The key feature of this compound is a crystal structure that has a Zn-site with a 50% occupancy. Here we use comparison of experimental thermal conductivity measurements and first principles thermal conductivity calculations to characterize the thermal conductivity reduction. We find that partial ordering, characterized by local order, but Zn-site disorder on longer scales, leads to an intrinsic nanostructuring induced reduction in thermal conductivity, while retaining electron mobility. This provides a direction for identifying Zintl compounds with ultralow lattice thermal conductivity and good electrical conductivity.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2372
Author(s):  
Ravi P. Agarwal ◽  
Mohamed Jleli ◽  
Bessem Samet

We investigate the existence and uniqueness of positive solutions to an integral equation involving convex or concave nonlinearities. A numerical algorithm based on Picard iterations is provided to obtain an approximation of the unique solution. The main tools used in this work are based on partial-ordering methods and fixed-point theory. Our results are supported by examples.


2021 ◽  
Vol 1 (2) ◽  
pp. 001-016
Author(s):  
Lars Carlsen ◽  
Poul Erik Hansen ◽  
Bahjat A Saeed ◽  
Rita S Elias

The possible effect of curcumin as a potential natural cancer treatment drug has been intensively discussed. In the present study the probabilities of a series of curcumin analogues to possess potential as antineoplastic, prostate cancer treatment and anticarcinogenic agents has been studied theoretically applying a selection of quantitative structure-activity relation and absorption, distribution, metabolism, and excretion (ADME) approaches. From spectroscopic studies it is evident that these compounds can be found in both enol and diketo forms, the former in general the more predominant in non-polar solvents, whereas in polar solvents, like water an increasing amount of the diketo form can be noted. Hence, the probabilities for both the enols and diketo forms to possess the above-mentioned effects were studied. In most cases the enol form shows the highest probabilities for being effective although the differences are not significant. Thus, it is suggested to look at the sum of effects of the keto and the enol forms in relation to the possible therapeutic effects of the compounds here studied.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Antoine Neven ◽  
David Kenworthy Gunn ◽  
Martin Hebenstreit ◽  
Barbara Kraus

Understanding multipartite entanglement is vital, as it underpins a wide range of phenomena across physics. The study of transformations of states via Local Operations assisted by Classical Communication (LOCC) allows one to quantitatively analyse entanglement, as it induces a partial order in the Hilbert space. However, it has been shown that, for systems with fixed local dimensions, this order is generically trivial, which prevents relating multipartite states to each other with respect to any entanglement measure. In order to obtain a non-trivial partial ordering, we study a physically motivated extension of LOCC: multi-state LOCC. Here, one considers simultaneous LOCC transformations acting on a finite number of entangled pure states. We study both multipartite and bipartite multi-state transformations. In the multipartite case, we demonstrate that one can change the stochastic LOCC (SLOCC) class of the individual initial states by only applying Local Unitaries (LUs). We show that, by transferring entanglement from one state to the other, one can perform state conversions not possible in the single copy case; provide examples of multipartite entanglement catalysis; and demonstrate improved probabilistic protocols. In the bipartite case, we identify numerous non-trivial LU transformations and show that the source entanglement is not additive. These results demonstrate that multi-state LOCC has a much richer landscape than single-state LOCC.


2021 ◽  
Vol 13 (11) ◽  
pp. 6278
Author(s):  
Lars Carlsen ◽  
Rainer Bruggemann

The inequality within the 27 European member states has been studied. Six indicators proclaimed by Eurostat to be the main indicators charactere the countries: (i) the relative median at-risk-of-poverty gap, (ii) the income distribution, (iii) the income share of the bottom 40% of the population, (iv) the purchasing power adjusted GDP per capita, (v) the adjusted gross disposable income of households per capita and (vi) the asylum applications by state of procedure. The resulting multi-indicator system was analyzed applying partial ordering methodology, i.e., including all indicators simultaneously without any pretreatment. The degree of inequality was studied for the years 2010, 2015 and 2019. The EU member states were partially ordered and ranked. For all three years Luxembourg, The Netherlands, Austria, and Finland are found to be highly ranked, i.e., having rather low inequality. Bulgaria and Romania are, on the other hand, for all three years ranked low, with the highest degree of inequality. Excluding the asylum indicator, the risk-poverty-gap and the adjusted gross disposable income were found as the most important indicators. If, however, the asylum application is included, this indicator turns out as the most important for the mutual ranking of the countries. A set of additional indicators was studied disclosing the educational aspect as of major importance to achieve equality. Special partial ordering tools were applied to study the role of the single indicators, e.g., in relation to elucidate the incomparability of some countries to all other countries within the union.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. I. Khomskii

AbstractSpin ice systems display a variety of very nontrivial properties, the most striking being the existence in them of magnetic monopoles. Such monopole states can also have nontrivial electric properties: there exist electric dipoles attached to each monopole. A novel situation is encountered in the moment fragmentation (MF) state, in which monopoles and antimonopoles are perfectly ordered, whereas spins themselves remain disordered. We show that such partial ordering strongly modifies the electric activity of such systems: the electric dipoles, which are usually random and dynamic, become paired in the MF state in (d, −d) pairs, thus strongly reducing their electric activity. The electric currents existing in systems with noncoplanar spins are also strongly influenced by MF. We also consider modifications in dipole and current patterns in magnetic textures (domain walls, local defects) and at excitations with nontrivial dynamics in a MF state, which show very rich behaviour and which could in principle allow to control them by electric field.


Author(s):  
Yi Ling Chiew ◽  
Masanobu Miyata ◽  
Mikio Koyano ◽  
Yoshifumi Oshima

Even though there has been a lot of studies on the magnetic properties of Fe x TiS2 and their corresponding atomic structures at different Fe concentrations, the dependency of the properties on the Fe atomic arrangement has not been fully clarified yet. In this study, Fe x TiS2 structures, synthesized by chemical vapor transport technique at Fe concentrations of 0.05, 0.10, 0.15, 0.20 0.25 and 0.33, were observed three-dimensionally using a transmission electron microscope and their corresponding magnetization values were measured using a superconducting quantum interference device. The results show a switch from local in-plane two-dimensional (2D) ordering of \sqrt 3 a and 2a at concentrations below 0.15 to three-dimensional (3D) ordering of 2a × 2a × 2c at x = 0.20 and 0.25, as well as \sqrt 3 a × \sqrt 3 a × 2c superstructures at x = 0.33, although it should be noted that the x = 0.20 sample only had partial ordering of Fe atoms. The type of Fe ordering present in Fe x TiS2 could be explained by the balance of cohesive energy of neighboring Fe atoms and local strain energy imposed on the host structure due to the formation of Fe clusters. It is also found that the switch from 2D to 3D Fe order coincides with the magnetic measurements, which reveal spin-glass behavior below x = 0.15 and ferromagnetic behavior above x = 0.20. This suggests that the magnetic properties of the Fe x TiS2 structure are highly influenced by the ordering of Fe atoms between planes.


Sign in / Sign up

Export Citation Format

Share Document