scholarly journals Scaling limits via excursion theory: Interplay between Crump–Mode–Jagers branching processes and processor-sharing queues

2013 ◽  
Vol 23 (6) ◽  
pp. 2357-2381 ◽  
Author(s):  
Amaury Lambert ◽  
Florian Simatos ◽  
Bert Zwart
1992 ◽  
Vol 24 (3) ◽  
pp. 653-698 ◽  
Author(s):  
Sergei Grishechkin

The M/G/1 queue with batch arrivals and a queueing discipline which is a generalization of processor sharing is studied by means of Crump–Mode–Jagers branching processes. A number of theorems are proved, including investigation of heavy traffic and overloaded queues. Most of the results obtained are also new for the M/G/1 queue with processor sharing. By use of a limiting procedure we also derive new results concerning M/G/1 queues with shortest residual processing time discipline.


1994 ◽  
Vol 26 (2) ◽  
pp. 539-555 ◽  
Author(s):  
Sergei Grishechkin

Consider GI/G/1 processor sharing queues with traffic intensity tending to 1. Using the theory of random measures and the theory of branching processes we investigate the limiting behaviour of the queue length, sojourn time and random measures describing attained and residual processing times of customers present.


1994 ◽  
Vol 26 (02) ◽  
pp. 539-555 ◽  
Author(s):  
Sergei Grishechkin

Consider GI/G/1 processor sharing queues with traffic intensity tending to 1. Using the theory of random measures and the theory of branching processes we investigate the limiting behaviour of the queue length, sojourn time and random measures describing attained and residual processing times of customers present.


1992 ◽  
Vol 24 (03) ◽  
pp. 653-698
Author(s):  
Sergei Grishechkin

The M/G/1 queue with batch arrivals and a queueing discipline which is a generalization of processor sharing is studied by means of Crump–Mode–Jagers branching processes. A number of theorems are proved, including investigation of heavy traffic and overloaded queues. Most of the results obtained are also new for the M/G/1 queue with processor sharing. By use of a limiting procedure we also derive new results concerning M/G/1 queues with shortest residual processing time discipline.


2006 ◽  
Vol 34 (1) ◽  
pp. 87-96 ◽  
Author(s):  
H. Christian Gromoll ◽  
Philippe Robert ◽  
Bert Zwart ◽  
Richard Bakker

2003 ◽  
Vol 35 (3) ◽  
pp. 806-845 ◽  
Author(s):  
Sem Borst ◽  
Michel Mandjes ◽  
Miranda van Uitert

We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic flows are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for achieving service differentiation in integrated networks. We derive the asymptotic workload behaviour of the light-tailed traffic flow under the assumption that its GPS weight is larger than its traffic intensity. The GPS mechanism ensures that the workload is bounded above by that in an isolated system with the light-tailed flow served in isolation at a constant rate equal to its GPS weight. We show that the workload distribution is, in fact, asymptotically equivalent to that in the isolated system, multiplied by a certain prefactor, which accounts for the interaction with the heavy-tailed flow. Specifically, the prefactor represents the probability that the heavy-tailed flow is backlogged long enough for the light-tailed flow to reach overflow. The results provide crucial qualitative insight in the typical overflow scenario.


2003 ◽  
Vol 35 (03) ◽  
pp. 806-845 ◽  
Author(s):  
Sem Borst ◽  
Michel Mandjes ◽  
Miranda van Uitert

We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic flows are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for achieving service differentiation in integrated networks. We derive the asymptotic workload behaviour of the light-tailed traffic flow under the assumption that its GPS weight is larger than its traffic intensity. The GPS mechanism ensures that the workload is bounded above by that in an isolated system with the light-tailed flow served in isolation at a constant rate equal to its GPS weight. We show that the workload distribution is, in fact, asymptotically equivalent to that in the isolated system, multiplied by a certain prefactor, which accounts for the interaction with the heavy-tailed flow. Specifically, the prefactor represents the probability that the heavy-tailed flow is backlogged long enough for the light-tailed flow to reach overflow. The results provide crucial qualitative insight in the typical overflow scenario.


Sign in / Sign up

Export Citation Format

Share Document