scholarly journals Almost direct summands

2014 ◽  
Vol 214 ◽  
pp. 195-204 ◽  
Author(s):  
Bhargav Bhatt

AbstractWe prove new cases of the direct summand conjecture using fundamental theorems in p-adic Hodge theory due to Faltings. The cases tackled include the ones when the ramification locus lies entirely in characteristic p.

2014 ◽  
Vol 214 ◽  
pp. 195-204 ◽  
Author(s):  
Bhargav Bhatt

AbstractWe prove new cases of the direct summand conjecture using fundamental theorems inp-adic Hodge theory due to Faltings. The cases tackled include the ones when the ramification locus lies entirely in characteristicp.


2014 ◽  
Vol 66 (3) ◽  
pp. 505-524 ◽  
Author(s):  
Donu Arapura

AbstractSuppose that Y is a cyclic cover of projective space branched over a hyperplane arrangement D and that U is the complement of the ramification locus in Y. The first theorem in this paper implies that the Beilinson-Hodge conjecture holds for U if certain multiplicities of D are coprime to the degree of the cover. For instance, this applies when D is reduced with normal crossings. The second theorem shows that when D has normal crossings and the degree of the cover is a prime number, the generalized Hodge conjecture holds for any toroidal resolution of Y. The last section contains some partial extensions to more general nonabelian covers.


2020 ◽  
Vol 2020 (768) ◽  
pp. 39-54
Author(s):  
Curtis T. McMullen

AbstractWe present a cohomological proof that recurrence of suitable Teichmüller geodesics implies unique ergodicity of their terminal foliations. This approach also yields concrete estimates for periodic foliations and new results for polygonal billiards.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


2021 ◽  
Vol 50 (3) ◽  
pp. 944-1005
Author(s):  
Guillermina Jasso

Inequality often appears in linked pairs of variables. Examples include schooling and income, income and consumption, and wealth and happiness. Consider the famous words of Veblen: “wealth confers honor.” Understanding inequality requires understanding input inequality, outcome inequality, and the relation between the two—in both inequality between persons and inequality between subgroups. This article contributes to the methodological toolkit for studying inequality by developing a framework that makes explicit both input inequality and outcome inequality and by addressing three main associated questions: (1) How do the mechanisms for generating and altering inequality differ across inputs and outcomes? (2) Which have more inequality—inputs or outcomes? (3) Under what conditions, and by what mechanisms, does input inequality affect outcome inequality? Results include the following: First, under specified conditions, distinctive mechanisms govern inequality in inputs and inequality in outcomes. Second, input inequality and outcome inequality can be the same or different; if different, whether inequality is greater among inputs or outcomes depends on the configuration of outcome function, types of inputs, distributional form of and inequality in cardinal inputs, and number of and associations among inputs. Third, the link between input inequality and outcome inequality is multiform; it can be nonexistent, linear, or nonlinear, and if nonlinear, it can be concave or convex. More deeply, this work signals the formidable empirical challenges in studying inequality, but also the fast growing toolbox. For example, even if the outcome distribution is difficult to derive, fundamental theorems on the variance make it possible to analyze the input–outcome inequality connection. Similarly, within specified distributions, the general inequality parameter makes it possible to express results in terms of both measures of overall inequality and measures of subgroup inequality.


1988 ◽  
Vol 104 (2) ◽  
pp. 207-213 ◽  
Author(s):  
Peter Symonds

If G is a group with a subgroup H and R is a Dedekind domain, then an H-projective RG-lattice is an RG-lattice that is a direct summand of an induced lattice for some RH-lattice N: they have been studied extensively in the context of modular representation theory. If H is the trivial group these are the projective lattices. We define a relative character χG/H on H-projective lattices, which in the case H = 1 is equivalent to the Hattori–Stallings trace for projective lattices (see [5, 8]), and in the case H = G is the ordinary character. These characters can be used to show that the R-ranks of certain H-projective lattices must be divisible by some specified number, generalizing some well-known results: cf. Corollary 3·6. If for example we take R = ℤ, then |G/H| divides the ℤ-rank of any H-projective ℤG-lattice.


Sign in / Sign up

Export Citation Format

Share Document