modular representation theory
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 8 (33) ◽  
pp. 1024-1055
Author(s):  
C. Bessenrodt ◽  
C. Bowman ◽  
L. Sutton

This paper consists of two prongs. Firstly, we prove that any Specht module labelled by a 2-separated partition is semisimple and we completely determine its decomposition as a direct sum of graded simple modules. Secondly, we apply these results and other modular representation theoretic techniques on the study of Kronecker coefficients and hence verify Saxl’s conjecture for several large new families of partitions. In particular, we verify Saxl’s conjecture for all irreducible characters of S n \mathfrak {S}_n which are of 2-height zero.


2021 ◽  
Vol 110 (1) ◽  
pp. 1-47
Author(s):  
JOSHUA CIAPPARA ◽  
GEORDIE WILLIAMSON

AbstractThese notes provide a concise introduction to the representation theory of reductive algebraic groups in positive characteristic, with an emphasis on Lusztig's character formula and geometric representation theory. They are based on the first author's notes from a lecture series delivered by the second author at the Simons Centre for Geometry and Physics in August 2019. We intend them to complement more detailed treatments.


2020 ◽  
Vol 8 ◽  
Author(s):  
DANIEL LE ◽  
BAO V. LE HUNG ◽  
BRANDON LEVIN ◽  
STEFANO MORRA

We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$ -arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $p$ . This is a generalization to $\text{GL}_{3}$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $n$ -dimensional Galois representations’, Duke Math. J. 149(1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212(1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $\text{GL}_{3}(\mathbb{F}_{q})$ .


2017 ◽  
Vol 166 (2) ◽  
pp. 297-323
Author(s):  
HAO CHANG ◽  
ROLF FARNSTEINER

AbstractLet be a finite group scheme over an algebraically closed field k of characteristic char(k) = p ≥ 3. In generalisation of the familiar notion from the modular representation theory of finite groups, we define the p-rank rkp() of and determine the structure of those group schemes of p-rank 1, whose linearly reductive radical is trivial. The most difficult case concerns infinitesimal groups of height 1, which correspond to restricted Lie algebras. Our results show that group schemes of p-rank ≤ 1 are closely related to those being of finite or domestic representation type.


2017 ◽  
Vol 60 (4) ◽  
pp. 813-830 ◽  
Author(s):  
Andreas Bächle ◽  
Leo Margolis

AbstractWe introduce a new method to study rational conjugacy of torsion units in integral group rings using integral and modular representation theory. Employing this new method, we verify the first Zassenhaus conjecture for the group PSL(2, 19). We also prove the Zassenhaus conjecture for PSL(2, 23). In a second application we show that there are no normalized units of order 6 in the integral group rings of M10 and PGL(2, 9). This completes the proof of a theorem of Kimmerle and Konovalov that shows that the prime graph question has an affirmative answer for all groups having an order divisible by at most three different primes.


2017 ◽  
Vol 153 (3) ◽  
pp. 621-646 ◽  
Author(s):  
Alexander S. Kleshchev ◽  
David J. Steinberg

Khovanov–Lauda–Rouquier (KLR) algebras of finite Lie type come with families of standard modules, which under the Khovanov–Lauda–Rouquier categorification correspond to PBW bases of the positive part of the corresponding quantized enveloping algebra. We show that there are no non-zero homomorphisms between distinct standard modules and that all non-zero endomorphisms of a standard module are injective. We present applications to the extensions between standard modules and modular representation theory of KLR algebras.


Sign in / Sign up

Export Citation Format

Share Document