fundamental theorems
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 47)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-27
Author(s):  
Chris Heunen ◽  
Robin Kaarsgaard

We study the two dual quantum information effects to manipulate the amount of information in quantum computation: hiding and allocation. The resulting type-and-effect system is fully expressive for irreversible quantum computing, including measurement. We provide universal categorical constructions that semantically interpret this arrow metalanguage with choice, starting with any rig groupoid interpreting the reversible base language. Several properties of quantum measurement follow in general, and we translate (noniterative) quantum flow charts into our language. The semantic constructions turn the category of unitaries between Hilbert spaces into the category of completely positive trace-preserving maps, and they turn the category of bijections between finite sets into the category of functions with chosen garbage. Thus they capture the fundamental theorems of classical and quantum reversible computing of Toffoli and Stinespring.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2816
Author(s):  
Vasily E. Tarasov

A generalization of fractional vector calculus (FVC) as a self-consistent mathematical theory is proposed to take into account a general form of non-locality in kernels of fractional vector differential and integral operators. Self-consistency involves proving generalizations of all fundamental theorems of vector calculus for generalized kernels of operators. In the generalization of FVC from power-law nonlocality to the general form of nonlocality in space, we use the general fractional calculus (GFC) in the Luchko approach, which was published in 2021. This paper proposed the following: (I) Self-consistent definitions of general fractional differential vector operators: the regional and line general fractional gradients, the regional and surface general fractional curl operators, the general fractional divergence are proposed. (II) Self-consistent definitions of general fractional integral vector operators: the general fractional circulation, general fractional flux and general fractional volume integral are proposed. (III) The general fractional gradient, Green’s, Stokes’ and Gauss’s theorems as fundamental theorems of general fractional vector calculus are proved for simple and complex regions. The fundamental theorems (Gradient, Green, Stokes, Gauss theorems) of the proposed general FVC are proved for a wider class of domains, surfaces and curves. All these three parts allow us to state that we proposed a calculus, which is a general fractional vector calculus (General FVC). The difficulties and problems of defining general fractional integral and differential vector operators are discussed to the nonlocal case, caused by the violation of standard product rule (Leibniz rule), chain rule (rule of differentiation of function composition) and semigroup property. General FVC for orthogonal curvilinear coordinates, which includes general fractional vector operators for the spherical and cylindrical coordinates, is also proposed.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1397
Author(s):  
Hanan Alolaiyan ◽  
Muhammad Haris Mateen ◽  
Dragan Pamucar ◽  
Muhammad Khalid Mahmmod ◽  
Farrukh Arslan

The role of symmetry in ring theory is universally recognized. The most directly definable universal relation in a symmetric set theory is isomorphism. This article develops a certain structure of bipolar fuzzy subrings, including bipolar fuzzy quotient ring, bipolar fuzzy ring homomorphism, and bipolar fuzzy ring isomorphism. We define (α,β)-cut of bipolar fuzzy set and investigate the algebraic attributions of this phenomenon. We also define the support set of bipolar fuzzy set and prove various important properties relating to this concept. Additionally, we define bipolar fuzzy homomorphism by using the notion of natural ring homomorphism. We also establish a bipolar fuzzy homomorphism between bipolar fuzzy subring of the quotient ring and bipolar fuzzy subring of this ring. We constituted a significant relationship between two bipolar fuzzy subrings of quotient rings under a given bipolar fuzzy surjective homomorphism. We present the construction of an induced bipolar fuzzy isomorphism between two related bipolar fuzzy subrings. Moreover, to discuss the symmetry between two bipolar fuzzy subrings, we present three fundamental theorems of bipolar fuzzy isomorphism.


2021 ◽  
Vol 50 (3) ◽  
pp. 944-1005
Author(s):  
Guillermina Jasso

Inequality often appears in linked pairs of variables. Examples include schooling and income, income and consumption, and wealth and happiness. Consider the famous words of Veblen: “wealth confers honor.” Understanding inequality requires understanding input inequality, outcome inequality, and the relation between the two—in both inequality between persons and inequality between subgroups. This article contributes to the methodological toolkit for studying inequality by developing a framework that makes explicit both input inequality and outcome inequality and by addressing three main associated questions: (1) How do the mechanisms for generating and altering inequality differ across inputs and outcomes? (2) Which have more inequality—inputs or outcomes? (3) Under what conditions, and by what mechanisms, does input inequality affect outcome inequality? Results include the following: First, under specified conditions, distinctive mechanisms govern inequality in inputs and inequality in outcomes. Second, input inequality and outcome inequality can be the same or different; if different, whether inequality is greater among inputs or outcomes depends on the configuration of outcome function, types of inputs, distributional form of and inequality in cardinal inputs, and number of and associations among inputs. Third, the link between input inequality and outcome inequality is multiform; it can be nonexistent, linear, or nonlinear, and if nonlinear, it can be concave or convex. More deeply, this work signals the formidable empirical challenges in studying inequality, but also the fast growing toolbox. For example, even if the outcome distribution is difficult to derive, fundamental theorems on the variance make it possible to analyze the input–outcome inequality connection. Similarly, within specified distributions, the general inequality parameter makes it possible to express results in terms of both measures of overall inequality and measures of subgroup inequality.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1501
Author(s):  
Vasily E. Tarasov

For the first time, a general fractional calculus of arbitrary order was proposed by Yuri Luchko in 2021. In Luchko works, the proposed approaches to formulate this calculus are based either on the power of one Sonin kernel or the convolution of one Sonin kernel with the kernels of the integer-order integrals. To apply general fractional calculus, it is useful to have a wider range of operators, for example, by using the Laplace convolution of different types of kernels. In this paper, an extended formulation of the general fractional calculus of arbitrary order is proposed. Extension is achieved by using different types (subsets) of pairs of operator kernels in definitions general fractional integrals and derivatives. For this, the definition of the Luchko pair of kernels is somewhat broadened, which leads to the symmetry of the definition of the Luchko pair. The proposed set of kernel pairs are subsets of the Luchko set of kernel pairs. The fundamental theorems for the proposed general fractional derivatives and integrals are proved.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 998
Author(s):  
Alaa Altassan ◽  
Muhammad Haris Mateen ◽  
Dragan Pamucar

In this study, we define the concept of an ω-fuzzy set ω-fuzzy subring and show that the intersection of two ω-fuzzy subrings is also an ω-fuzzy subring of a given ring. Moreover, we give the notion of an ω-fuzzy ideal and investigate different fundamental results of this phenomenon. We extend this ideology to propose the notion of an ω-fuzzy coset and develop a quotient ring with respect to this particular fuzzy ideal analog into a classical quotient ring. Additionally, we found an ω-fuzzy quotient subring. We also define the idea of a support set of an ω-fuzzy set and prove various important characteristics of this phenomenon. Further, we describe ω-fuzzy homomorphism and ω-fuzzy isomorphism. We establish an ω-fuzzy homomorphism between an ω-fuzzy subring of the quotient ring and an ω-fuzzy subring of this ring. We constitute a significant relationship between two ω-fuzzy subrings of quotient rings under the given ω-fuzzy surjective homomorphism and prove some more fundamental theorems of ω-fuzzy homomorphism for these specific fuzzy subrings. Finally, we present three fundamental theorems of ω-fuzzy isomorphism.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 755
Author(s):  
Yuri Luchko

In this paper, we introduce the general fractional integrals and derivatives of arbitrary order and study some of their basic properties and particular cases. First, a suitable generalization of the Sonine condition is presented, and some important classes of the kernels that satisfy this condition are introduced. Whereas the kernels of the general fractional derivatives of arbitrary order possess integrable singularities at the point zero, the kernels of the general fractional integrals can—depending on their order—be both singular and continuous at the origin. For the general fractional integrals and derivatives of arbitrary order with the kernels introduced in this paper, two fundamental theorems of fractional calculus are formulated and proved.


2021 ◽  
Vol 4 (2) ◽  

The superunified field theory consists of a row of discoveries in the realm of pure mathematics. It is two centuries ago that Karl Gauss unified higher arithmetic (number theory), algebra and geometry into what is called pure mathematics. The latter, however, still remains without its fundamental theorem despite that arithmetic and algebra, or even analysis, have their own.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 594
Author(s):  
Yuri Luchko

In this paper, we address the general fractional integrals and derivatives with the Sonine kernels on the spaces of functions with an integrable singularity at the point zero. First, the Sonine kernels and their important special classes and particular cases are discussed. In particular, we introduce a class of the Sonine kernels that possess an integrable singularity of power function type at the point zero. For the general fractional integrals and derivatives with the Sonine kernels from this class, two fundamental theorems of fractional calculus are proved. Then, we construct the n-fold general fractional integrals and derivatives and study their properties.


Sign in / Sign up

Export Citation Format

Share Document