scholarly journals Connected fully reducible affine group schemes in positive characteristic are Abelian

1971 ◽  
Vol 11 (1) ◽  
pp. 51-70 ◽  
Author(s):  
Moss Eisenberg Sweedler
1972 ◽  
Vol 22 (3) ◽  
pp. 546-558 ◽  
Author(s):  
John Brendan Sullivan
Keyword(s):  

Author(s):  
Isamu Iwanari

AbstractIn this paper we begin studying tannakian constructions in ∞-categories and combine them with the theory of motivic categories developed by Hanamura, Levine, and Voevodsky. This paper is the first in a series of papers. For the purposes above, we first construct a derived affine group scheme and its representation category from a symmetric monoidal ∞-category, which we shall call the tannakization of a symmetric monoidal ∞-category. It can be viewed as an ∞-categorical generalization of work of Joyal-Street and Nori. Next we apply it to the stable ∞-category of mixed motives equipped with the realization functor of a mixed Weil cohomology. We construct a derived motivic Galois group which represents the automorphism group of the realization functor, and whose representation category satisfies an appropriate universal property. As a consequence, we construct an underived motivic Galois group of mixed motives, which is a pro-algebraic group and has nice properties. Also, we present basic properties of derived affine group schemes in the Appendix.


1980 ◽  
Vol 66 (2) ◽  
pp. 550-568 ◽  
Author(s):  
William C Waterhouse ◽  
Boris Weisfeiler

Author(s):  
Phùng Hô Hai ◽  
João Pedro dos Santos

Abstract In the first part of this work [ 12], we studied affine group schemes over a discrete valuation ring (DVR) by means of Neron blowups. We also showed how to apply these findings to throw light on the group schemes coming from Tannakian categories of $\mathcal{D}$-modules. In the present work, we follow up this theme. We show that a certain class of affine group schemes of “infinite type,” Neron blowups of formal subgroups, are quite typical. We also explain how these group schemes appear naturally in Tannakian categories of $\mathcal{D}$-modules. To conclude, we isolate a Tannakian property of affine group schemes, named prudence, which allows one to verify if the underlying ring of functions is a free module over the base ring. This is then successfully applied to obtain a general result on the structure of differential Galois groups over complete DVRs.


2005 ◽  
Vol 04 (04) ◽  
pp. 369-404 ◽  
Author(s):  
JAWAD Y. ABUHLAIL

(Co)induction functors appear in several areas of Algebra in different forms. Interesting examples are the so called induction functors in the Theory of Affine Algebraic Groups. In this paper we investigate Hopf pairings (bialgebra pairings) and use them to study (co)induction functors for affine group schemes over arbitrary commutative ground rings. We present also a special type of Hopf pairings (bialgebra pairings) satisfying the so called α-condition. For those pairings the coinduction functor is studied and nice descriptions of it are obtained. Along the paper several interesting results are generalized from the case of base fields to the case of arbitrary commutative (Noetherian) ground rings.


Sign in / Sign up

Export Citation Format

Share Document