scholarly journals The topological center of weighted semigroup algebras with a strict topology

2012 ◽  
Vol 42 (3) ◽  
pp. 979-998
Author(s):  
S. Maghsoudi ◽  
R. Nasr-Isfahani
2010 ◽  
Vol 80 (2) ◽  
pp. 302-312 ◽  
Author(s):  
Massoud Amini ◽  
Abasalt Bodaghi ◽  
Davood Ebrahimi Bagha

Author(s):  
F. Ghahramani ◽  
A. R. Medgalchi

AbstractLet Mω(X) be a weighted hypergroup algebra, and Lω(X) be the Banach algebra of measures μ ε Mω(X) such that the function x ↦ (1/ω(x))δx* |μ| is norm continuous. We characterize compact multipliers on Lω(X). This extends the characterization of compact multipliers on weighted group algebras and some classes of weighted semigroup algebras.


2015 ◽  
Vol 92 (1) ◽  
pp. 304-310
Author(s):  
H. R. Ebrahimi Vishki ◽  
B. Khodsiani ◽  
A. Rejali

2006 ◽  
Vol 99 (2) ◽  
pp. 217 ◽  
Author(s):  
Matthew Daws

We investigate the notion of Connes-amenability, introduced by Runde in [10], for bidual algebras and weighted semigroup algebras. We provide some simplifications to the notion of a $\sigma WC$-virtual diagonal, as introduced in [13], especially in the case of the bidual of an Arens regular Banach algebra. We apply these results to discrete, weighted, weakly cancellative semigroup algebras, showing that these behave in the same way as ${ C}^*$-algebras with regards Connes-amenability of the bidual algebra. We also show that for each one of these cancellative semigroup algebras $l^1(S,\omega)$, we have that $l^1(S,\omega)$ is Connes-amenable (with respect to the canonical predual $c_0(S)$) if and only if $l^1(S,\omega)$ is amenable, which is in turn equivalent to $S$ being an amenable group, and the weight satisfying a certain restrictive condition. This latter point was first shown by Grønnbæk in [6], but we provide a unified proof. Finally, we consider the homological notion of injectivity, and show that here, weighted semigroup algebras do not behave like ${ C}^*$-algebras.


2004 ◽  
Vol 104 (2) ◽  
pp. 211-218 ◽  
Author(s):  
M. J. Crabb ◽  
J. Duncan ◽  
C. M. McGregor

10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


1971 ◽  
Vol 18 (3) ◽  
pp. 404-413 ◽  
Author(s):  
William R Nico

Sign in / Sign up

Export Citation Format

Share Document