scholarly journals New discount and average optimality conditions for continuous-time Markov decision processes

2010 ◽  
Vol 42 (4) ◽  
pp. 953-985 ◽  
Author(s):  
Xianping Guo ◽  
Liuer Ye

This paper deals with continuous-time Markov decision processes in Polish spaces, under the discounted and average cost criteria. All underlying Markov processes are determined by given transition rates which are allowed to be unbounded, and the costs are assumed to be bounded below. By introducing an occupation measure of a randomized Markov policy and analyzing properties of occupation measures, we first show that the family of all randomized stationary policies is ‘sufficient’ within the class of all randomized Markov policies. Then, under the semicontinuity and compactness conditions, we prove the existence of a discounted cost optimal stationary policy by providing a value iteration technique. Moreover, by developing a new average cost, minimum nonnegative solution method, we prove the existence of an average cost optimal stationary policy under some reasonably mild conditions. Finally, we use some examples to illustrate applications of our results. Except that the costs are assumed to be bounded below, the conditions for the existence of discounted cost (or average cost) optimal policies are much weaker than those in the previous literature, and the minimum nonnegative solution approach is new.

2010 ◽  
Vol 42 (04) ◽  
pp. 953-985 ◽  
Author(s):  
Xianping Guo ◽  
Liuer Ye

This paper deals with continuous-time Markov decision processes in Polish spaces, under the discounted and average cost criteria. All underlying Markov processes are determined by given transition rates which are allowed to be unbounded, and the costs are assumed to be bounded below. By introducing an occupation measure of a randomized Markov policy and analyzing properties of occupation measures, we first show that the family of all randomized stationary policies is ‘sufficient’ within the class of all randomized Markov policies. Then, under the semicontinuity and compactness conditions, we prove the existence of a discounted cost optimal stationary policy by providing a value iteration technique. Moreover, by developing a new average cost, minimum nonnegative solution method, we prove the existence of an average cost optimal stationary policy under some reasonably mild conditions. Finally, we use some examples to illustrate applications of our results. Except that the costs are assumed to be bounded below, the conditions for the existence of discounted cost (or average cost) optimal policies are much weaker than those in the previous literature, and the minimum nonnegative solution approach is new.


1989 ◽  
Vol 3 (2) ◽  
pp. 247-272 ◽  
Author(s):  
Linn I. Sennott

Semi-Markov decision processes underlie the control of many queueing systems. In this paper, we deal with infinite state semi-Markov decision processes with nonnegative, unbounded costs and finite action sets. Axioms for the existence of an expected average cost optimal stationary policy are presented. These conditions generalize the work in Sennott [22] for Markov decision processes. Verifiable conditions for the axioms to hold are obtained. The theory is applied to control of the M/G/l queue with variable service parameter, with on-off server, and with batch processing, and to control of the G/M/m queue with variable arrival parameter and customer rejection. It is applied to a timesharing network of queues with a single server and finally to optimal routing of Poisson arrivals to parallel exponential servers. The final section extends the existence result to compact action spaces.


2006 ◽  
Vol 43 (02) ◽  
pp. 318-334
Author(s):  
Xianping Guo ◽  
Quanxin Zhu

In this paper we study discrete-time Markov decision processes with Borel state and action spaces. The criterion is to minimize average expected costs, and the costs may have neither upper nor lower bounds. We first provide two average optimality inequalities of opposing directions and give conditions for the existence of solutions to them. Then, using the two inequalities, we ensure the existence of an average optimal (deterministic) stationary policy under additional continuity-compactness assumptions. Our conditions are slightly weaker than those in the previous literature. Also, some new sufficient conditions for the existence of an average optimal stationary policy are imposed on the primitive data of the model. Moreover, our approach is slightly different from the well-known ‘optimality inequality approach’ widely used in Markov decision processes. Finally, we illustrate our results in two examples.


2006 ◽  
Vol 43 (2) ◽  
pp. 318-334 ◽  
Author(s):  
Xianping Guo ◽  
Quanxin Zhu

In this paper we study discrete-time Markov decision processes with Borel state and action spaces. The criterion is to minimize average expected costs, and the costs may have neither upper nor lower bounds. We first provide two average optimality inequalities of opposing directions and give conditions for the existence of solutions to them. Then, using the two inequalities, we ensure the existence of an average optimal (deterministic) stationary policy under additional continuity-compactness assumptions. Our conditions are slightly weaker than those in the previous literature. Also, some new sufficient conditions for the existence of an average optimal stationary policy are imposed on the primitive data of the model. Moreover, our approach is slightly different from the well-known ‘optimality inequality approach’ widely used in Markov decision processes. Finally, we illustrate our results in two examples.


2006 ◽  
Vol 2006 ◽  
pp. 1-8 ◽  
Author(s):  
Quanxin Zhu ◽  
Xianping Guo

This paper deals with discrete-time Markov decision processes with Borel state and action spaces. The criterion to be minimized is the average expected costs, and the costs may have neither upper nor lower bounds. In our former paper (to appear in Journal of Applied Probability), weaker conditions are proposed to ensure the existence of average optimal stationary policies. In this paper, we further study some properties of optimal policies. Under these weaker conditions, we not only obtain two necessary and sufficient conditions for optimal policies, but also give a “semimartingale characterization” of an average optimal stationary policy.


2021 ◽  
Vol 229 ◽  
pp. 01047
Author(s):  
Abdellatif Semmouri ◽  
Mostafa Jourhmane ◽  
Bahaa Eddine Elbaghazaoui

In this paper we consider a constrained optimization of discrete time Markov Decision Processes (MDPs) with finite state and action spaces, which accumulate both a reward and costs at each decision epoch. We will study the problem of finding a policy that maximizes the expected total discounted reward subject to the constraints that the expected total discounted costs are not greater than given values. Thus, we will investigate the decomposition method of the state space into the strongly communicating classes for computing an optimal or a nearly optimal stationary policy. The discounted criterion has many applications in several areas such that the Forest Management, the Management of Energy Consumption, the finance, the Communication System (Mobile Networks) and the artificial intelligence.


Sign in / Sign up

Export Citation Format

Share Document