scholarly journals The Hawkes Process with Different Exciting Functions and its Asymptotic Behavior

2015 ◽  
Vol 52 (1) ◽  
pp. 37-54 ◽  
Author(s):  
Raúl Fierro ◽  
Víctor Leiva ◽  
Jesper Møller

The standard Hawkes process is constructed from a homogeneous Poisson process and uses the same exciting function for different generations of offspring. We propose an extension of this process by considering different exciting functions. This consideration may be important in a number of fields; e.g. in seismology, where main shocks produce aftershocks with possibly different intensities. The main results are devoted to the asymptotic behavior of this extension of the Hawkes process. Indeed, a law of large numbers and a central limit theorem are stated. These results allow us to analyze the asymptotic behavior of the process when unpredictable marks are considered.

2015 ◽  
Vol 52 (01) ◽  
pp. 37-54 ◽  
Author(s):  
Raúl Fierro ◽  
Víctor Leiva ◽  
Jesper Møller

The standard Hawkes process is constructed from a homogeneous Poisson process and uses the same exciting function for different generations of offspring. We propose an extension of this process by considering different exciting functions. This consideration may be important in a number of fields; e.g. in seismology, where main shocks produce aftershocks with possibly different intensities. The main results are devoted to the asymptotic behavior of this extension of the Hawkes process. Indeed, a law of large numbers and a central limit theorem are stated. These results allow us to analyze the asymptotic behavior of the process when unpredictable marks are considered.


2016 ◽  
Vol 53 (1) ◽  
pp. 307-314 ◽  
Author(s):  
Zhenlong Gao ◽  
Yanhua Zhang

Abstract Let {Zn, n = 0, 1, 2, . . .} be a supercritical branching process, {Nt, t ≥ 0} be a Poisson process independent of {Zn, n = 0, 1, 2, . . .}, then {ZNt, t ≥ 0} is a supercritical Poisson random indexed branching process. We show a law of large numbers, central limit theorem, and large and moderate deviation principles for log ZNt.


2018 ◽  
Vol 50 (A) ◽  
pp. 177-190
Author(s):  
Götz Kersting ◽  
Anton Wakolbinger

Abstract We present a law of large numbers and a central limit theorem for the time to absorption of Λ-coalescents with dust started from n blocks, as n→∞. The proofs rely on an approximation of the logarithm of the block-counting process by means of a drifted subordinator.


Sign in / Sign up

Export Citation Format

Share Document