main shocks
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 571
Author(s):  
Corentin Gouache ◽  
Pierre Tinard ◽  
François Bonneau

Mainland France is characterized by low-to-moderate seismic activity, yet it is known that major earthquakes could strike this territory (e.g., Liguria in 1887 or Basel in 1356). Assessing this French seismic hazard is thus necessary in order to support building codes and to lead prevention actions towards the population. The Probabilistic Seismic Hazard Assessment (PSHA) is the classical approach used to estimate the seismic hazard. One way to apply PSHA is to generate synthetic earthquakes by propagating information from past seismicity and building various seismic scenarios. In this paper, we present an implementation of a stochastic generator of earthquakes and discuss its relevance to mimic the seismicity of low-to-moderate seismic areas. The proposed stochastic generator produces independent events (main shocks) and their correlated seismicity (only aftershocks). Main shocks are simulated first in time and magnitude considering all available data in the area, and then localized in space with the use of a probability map and regionalization. Aftershocks are simulated around main shocks by considering both the seismic moment ratio and distribution of the aftershock’s proportion. The generator is tested with mainland France data.


2021 ◽  
Vol 58 ◽  
pp. 131
Author(s):  
Vasileios Karakostas ◽  
Costas Papazachos ◽  
Eleftheria Papadimitriou ◽  
Michael Foumelis ◽  
Anastasia Kiratzi ◽  
...  

On 3 March 2021, the Mw6.3 Tyrnavos earthquake shook much of the Thessalia region, leading to extensive damage in many small towns and villages in the activated area. The first main shock was followed in the next day, on 4th of March 2021, by an “equivalent” main shock with Mw6.0 in the adjacent fault segment. These are the largest earthquakes to strike the northeastern part of Thessalia since the M6.3, 1941 Larissa earthquake. The main shocks triggered extensive liquefaction mainly along the banks of the Titarisios tributary where alluvial flood deposits most probably amplified the ground motions. Our seismic monitoring efforts, with the use of recordings of the regional seismological network along with a dense local network that was installed three days after the seismic excitation initiation, led to the improved understanding the geometry and kinematics of the activated faults. The aftershocks form a north–northwest–trending, east–northeast–dipping, ~40 km long distribution, encompassing the two main ruptures along with minor activated structures, consistent with the rupture length estimated from analysis of regional waveform data and InSAR modeling. The first rupture was expanded bilaterally, the second main shock nucleated at its northern tip, where from this second rupture propagated unilaterally to the north–northwest. The focal mechanisms of the two main shocks support an almost pure normal faulting, similar to the aftershocks fault plane solution determined in this study. The strong ground motion of the March 3 main shock was computed with a stochastic simulation of finite fault model. Coseismic displacements that were detected using a dense GPS / GNSS network of five permanent stations located the Thessaly region, have shown an NNE–SSW extension as expected from the nature and location of the causative fault. Coulomb stress changes due to the coseismic slip of the first main shock, revealed that the hypocentral region of the second main shock was brought closer to failure by more than 10 bars.


Author(s):  
Alessandra Marotta ◽  
Domenico Liberatore ◽  
Luigi Sorrentino

AbstractFor both spiritual and cultural reasons, churches are an essential part of the historical heritage of several countries worldwide, including Europe, Americas and Australasia. The extreme damage that occurred during the 2016–2017 Central Italy seismic swarm highlighted once again the noteworthy seismic vulnerability of unreinforced masonry churches, which exhibited several collapses and caused uncountable losses to the Italian artistic heritage. The seismic performance of 158 affected buildings was analyzed in the aftermath of the main shocks. The failure modes activated by the earthquakes were identified making reference to the local mechanisms currently considered in Italy for post-seismic assessment of churches. The structural damage of the investigated buildings, related to 21 mechanisms rather than to an overall global response, was explained resorting to empirical statistical procedures taking into account ground motion intensity and structural details that can worsen or improve the seismic performance. Finally, parametric fragility curves were derived selecting those structural details that mostly influence the damage by means of the likelihood-ratio test. Developed models can be used in future territorial-scale scenario or risk analyses.


Author(s):  
Alban Kita ◽  
Nicola Cavalagli ◽  
Ilaria Venanzi ◽  
Filippo Ubertini

AbstractThis paper presents a novel method for rapidly addressing the earthquake-induced damage identification task in historic masonry towers. The proposed method, termed DORI, combines operational modal analysis (OMA), FE modeling, rapid surrogate modeling (SM) and non-linear Incremental dynamic analysis (IDA). While OMA-based Structural Health Monitoring methods using statistical pattern recognition are known to allow the detection of small structural damages due to earthquakes, even far-field ones of moderate intensity, the combination of SM and IDA-based methods for damage localization and quantification is here proposed. The monumental bell tower of the Basilica of San Pietro located in Perugia, Italy, is considered for the validation of the method. While being continuously monitored since 2014, the bell tower experienced the main shocks of the 2016 Central Italy seismic sequence and the on-site vibration-based monitoring system detected changes in global dynamic behavior after the earthquakes. In the paper, experimental vibration data (continuous and seismic records), FE models and surrogate models of the structure are used for post-earthquake damage localization and quantification exploiting an ideal subdivision of the structure into meaningful macroelements. Results of linear and non-linear numerical modeling (SM and IDA, respectively) are successfully combined to this aim and the continuous exchange of information between the physical reality (monitoring data) and the virtual models (FE models and surrogate models) effectively enforces the Digital Twin paradigm. The earthquake-induced damage identified by both data-driven and model-based strategies is finally confirmed by in-situ visual inspections.


2021 ◽  
Author(s):  
Huaizhong Yu ◽  
Chen Yu ◽  
Binbin Zhao ◽  
Chong Yue ◽  
Yulong Chang

Abstract The groundwater might be adopted as a useful tool to explore pre-seismic stress change in the crust, because it circulates in the deep crust and should be altered by the processes associated with the preparation of earthquakes. This work makes a new attempt that applies the load/unload response ratio (LURR) technique to study stress state of source media by calculating the ratio between water level during the loading and unloading phases. The change of Coulomb failure stress induced by earth tide in the tectonically preferred slip direction on the fault surface of the main shock is adopted for differentiating the loading and unloading periods. Using this approach, we test the groundwater level in the wells near the epicenters of some large earthquakes occurred in the Sichuan-Yunnan region of southwest China. Results show that the LURR time series fluctuate narrowly around 1.0 for many years, and climb to the maximum peaks prior to the main shocks. The magnitude of the pre-seismic peaks decreases with the distance from the epicenters. We hypothesized that the underlying physics of these changes might be explained by the pre-seismic dilatancy. The corresponding volume variations could be observed in the geodetic time series in the same neighborhoods.


2021 ◽  
Vol 43 (2) ◽  
pp. 111-188
Author(s):  
J. Bela ◽  
G. F. Panza

A New Paradigm (data driven and not like the currently model driven) is needed for Reliable Seismic Hazard Assessment RSHA. Neo-Deterministic Seismic Hazard Assessment (NDSHA) integrates earthquake geology, earthquake science, and particularly earthquake physics to finally achieve a New (and needed) Paradigm for Reliable Seismic Hazard Assessment RSHA.Although observations from many recent destructive earthquakes have all confirmed the validity of NDSHA’s approach and application to earthquake hazard forecasting-nonetheless damaging earthquakes still cannot yet be predicted with a precision requirement consistent with issuing a red alert and evacuation order to protect civil populations. However, intermediate-term (time scale) and middle-range (space scale) predictions of main shocks above a pre-assigned threshold may be properly used for the implementation of low-key preventive safety actions, as recommended by UNESCO in 1997. Furthermore, a proper integration of both seismological and geodetic information has been shown to also reliably contribute to a reduction of the geographic extent of alarms and it therefore defines a New Paradigm for TimeDependent Hazard Scenarios: Intermediate-Term (time scale) and Narrow-Range (space scale) Earthquake Prediction. 


2021 ◽  
Vol 43 (2) ◽  
Author(s):  
J. Bela ◽  
G. F. Panza

A New Paradigm (data driven and not like the currently model driven) is needed for Reliable Seismic Hazard Assessment RSHA. Neo-Deterministic Seismic Hazard Assessment (NDSHA) integrates earthquake geology, earthquake science, and particularly earthquake physics to finally achieve a New (and needed) Paradigm for Reliable Seismic Hazard Assessment RSHA.Although observations from many recent destructive earthquakes have all confirmed the validity of NDSHA’s approach and application to earthquake hazard forecasting-nonetheless damaging earthquakes still cannot yet be predicted with a precision requirement consistent with issuing a red alert and evacuation order to protect civil populations. However, intermediate-term (time scale) and middle-range (space scale) predictions of main shocks above a pre-assigned threshold may be properly used for the implementation of low-key preventive safety actions, as recommended by UNESCO in 1997. Furthermore, a proper integration of both seismological and geodetic information has been shown to also reliably contribute to a reduction of the geographic extent of alarms and it therefore defines a New Paradigm for TimeDependent Hazard Scenarios: Intermediate-Term (time scale) and Narrow-Range (space scale) Earthquake Prediction.


2021 ◽  
Vol 14 ◽  
pp. 45-50
Author(s):  
Adel Moatti ◽  
Mohammad Reza Amin-Nasseri ◽  
Hamid Zafarani

Earthquakes has been known as a destructive natural disaster. Due to high human casualties and economical losses, earthquake prediction appears critical. The b-value of Gutenberg Richter law has been considered as precursor to earthquake prediction. Temporal variation of b-value before earthquakes equal or greater than Mw = 6.0 has been examined in the south of Iran, the Qeshm island and around of this from 1995 to 2012. Clustering method by the k-means algorithm has been performed to find pattern of variation of b-value. Three clusters are obtained as optimum number of clusters by the Silhouette Index. Before all mentioned earthquakes greater than Mw = 6.0, cluster 1, which is known as a decrease in b-value has been seen. so decreasing b-value before main shocks as distinctive pattern has been considered. Also an approximate time of decrease has been determined.


Sign in / Sign up

Export Citation Format

Share Document