scholarly journals A Monte Carlo Analysis of Sensor Fusion Algorithm for the Estimation of Aerodynamic Angles in a Mini Aerial Vehicle

2011 ◽  
Vol 3 (1) ◽  
pp. 35-47 ◽  
Author(s):  
C. Ramprasadh ◽  
Hemendra Arya
2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Matthew Rhudy ◽  
Yu Gu ◽  
Jason Gross ◽  
Marcello R. Napolitano

Using an Unscented Kalman Filter (UKF) as the nonlinear estimator within a Global Positioning System/Inertial Navigation System (GPS/INS) sensor fusion algorithm for attitude estimation, various methods of calculating the matrix square root were discussed and compared. Specifically, the diagonalization method, Schur method, Cholesky method, and five different iterative methods were compared. Additionally, a different method of handling the matrix square root requirement, the square-root UKF (SR-UKF), was evaluated. The different matrix square root calculations were compared based on computational requirements and the sensor fusion attitude estimation performance, which was evaluated using flight data from an Unmanned Aerial Vehicle (UAV). The roll and pitch angle estimates were compared with independently measured values from a high quality mechanical vertical gyroscope. This manuscript represents the first comprehensive analysis of the matrix square root calculations in the context of UKF. From this analysis, it was determined that the best overall matrix square root calculation for UKF applications in terms of performance and execution time is the Cholesky method.


2021 ◽  
Vol 13 (5) ◽  
pp. 870
Author(s):  
Grzegorz Matczak ◽  
Przemyslaw Mazurek

Background estimation algorithms are important in UAV (Unmanned Aerial Vehicle) vision tracking systems. Incorrect selection of an algorithm and its parameters leads to false detections that must be filtered by the tracking algorithm of objects, even if there is only one UAV within the visibility range. This paper shows that, with the use of genetic optimization, it is possible to select an algorithm and its parameters automatically. Background estimation algorithms (CNT (CouNT), GMG (Godbehere-Matsukawa-Goldberg), GSOC (Google Summer of Code 2017), MOG (Mixture of Gaussian), KNN (K–Nearest Neighbor–based Background/Foreground Segmentation Algorithm), MOG2 (Mixture of Gaussian version 2), and MEDIAN) and the reference algorithm of thresholding were tested. Monte Carlo studies were carried out showing the advantages of the MOG2 algorithm for UAV detection. An empirical sensitivity analysis was presented that rejected the MEDIAN algorithm.


1998 ◽  
Vol 37 (03) ◽  
pp. 235-238 ◽  
Author(s):  
M. El-Taha ◽  
D. E. Clark

AbstractA Logistic-Normal random variable (Y) is obtained from a Normal random variable (X) by the relation Y = (ex)/(1 + ex). In Monte-Carlo analysis of decision trees, Logistic-Normal random variates may be used to model the branching probabilities. In some cases, the probabilities to be modeled may not be independent, and a method for generating correlated Logistic-Normal random variates would be useful. A technique for generating correlated Normal random variates has been previously described. Using Taylor Series approximations and the algebraic definitions of variance and covariance, we describe methods for estimating the means, variances, and covariances of Normal random variates which, after translation using the above formula, will result in Logistic-Normal random variates having approximately the desired means, variances, and covariances. Multiple simulations of the method using the Mathematica computer algebra system show satisfactory agreement with the theoretical results.


1996 ◽  
Author(s):  
Iain D. Boyd ◽  
Xiaoming Liu ◽  
Jitendra Balakrishnan

Sign in / Sign up

Export Citation Format

Share Document