Remote Sensing
Latest Publications


TOTAL DOCUMENTS

19310
(FIVE YEARS 16011)

H-INDEX

116
(FIVE YEARS 60)

Published By Mdpi Ag

2072-4292
Updated Tuesday, 18 January 2022

2022 ◽  
Vol 14 (2) ◽  
pp. 375
Author(s):  
Sina Voshtani ◽  
Richard Ménard ◽  
Thomas W. Walker ◽  
Amir Hakami

We applied the parametric variance Kalman filter (PvKF) data assimilation designed in Part I of this two-part paper to GOSAT methane observations with the hemispheric version of CMAQ to obtain the methane field (i.e., optimized analysis) with its error variance. Although the Kalman filter computes error covariances, the optimality depends on how these covariances reflect the true error statistics. To achieve more accurate representation, we optimize the global variance parameters, including correlation length scales and observation errors, based on a cross-validation cost function. The model and the initial error are then estimated according to the normalized variance matching diagnostic, also to maintain a stable analysis error variance over time. The assimilation results in April 2010 are validated against independent surface and aircraft observations. The statistics of the comparison of the model and analysis show a meaningful improvement against all four types of available observations. Having the advantage of continuous assimilation, we showed that the analysis also aims at pursuing the temporal variation of independent measurements, as opposed to the model. Finally, the performance of the PvKF assimilation in capturing the spatial structure of bias and uncertainty reduction across the Northern Hemisphere is examined, indicating the capability of analysis in addressing those biases originated, whether from inaccurate emissions or modelling error.


2022 ◽  
Vol 14 (2) ◽  
pp. 377
Author(s):  
Norma Camilla Baratta ◽  
Giulio Magli ◽  
Arianna Picotti

The Kofun period of the history of Japan—between the 3rd and the 7th century AD—bears its name from the construction of huge, earth mound tombs called Kofun. Among them, the largest have a keyhole shape and are attributed to the first, semi-legendary emperors. The study of the orientation of ancient tombs is usually a powerful tool to better understand the cognitive aspects of religion and power in ancient societies. This study has never been carried out in Japan due to the very large number of Kofun and to the fact that access to the perimeter is usually forbidden. For these reasons, to investigate Kofun orientations, simple tools of satellite imagery are used here. Our results strongly point to a connection of all Kofun entrance corridors with the arc of the sky where the Sun and the Moon are visible every day of the year; additionally, these show an orientation of the keyhole Kofun to the arc of the rising/shining Sun, the goddess that the Japanese emperors put at the mythical origin of their dynasty.


2022 ◽  
Vol 14 (2) ◽  
pp. 374
Author(s):  
Xueying Zhou ◽  
Zhaoqiang Huang ◽  
Youchuan Wan ◽  
Bin Ni ◽  
Yalong Zhang ◽  
...  

Water is an important factor in human survival and development. With the acceleration of urbanization, the problem of black and odorous water bodies has become increasingly prominent. It not only affects the living environment of residents in the city, but also threatens their diet and water quality. Therefore, the accurate monitoring and management of urban black and odorous water bodies is particularly important. At present, when researching water quality issues, the methods of fixed-point sampling and laboratory analysis are relatively mature, but the time and labor costs are relatively high. However, empirical models using spectral characteristics and different water quality parameters often lack universal applicability. In addition, a large number of studies on black and odorous water bodies are qualitative studies of water body types, and there are few spatially continuous quantitative analyses. Quantitative research on black and odorous waters is needed to identify the risk of health and environmental problems, as well as providing more accurate guidance on mitigation and treatment methods. In order to achieve this, a universal continuous black and odorous water index (CBOWI) is proposed that can classify waters based on evaluated parameters as well as quantitatively determine the degree of pollution and trends. The model of CBOWI is obtained by partial least squares machine learning through the parameters of the national black and odorous water classification standard. The fitting accuracy and monitoring accuracy of the model are 0.971 and 0.738, respectively. This method provides a new means to monitor black and odorous waters that can also help to improve decision-making and management.


2022 ◽  
Vol 14 (2) ◽  
pp. 352
Author(s):  
Rui Guo ◽  
Dongxia Wang ◽  
Nan Xing ◽  
Zhijun Liu ◽  
Tianqiao Zhang ◽  
...  

Radio determination satellite service (RDSS) is one of the characteristic services of Beidou navigation satellite system (BDS), and also distinguishes with other GNSS systems. BDS-3 RDSS adopts new signals, which is compatible with BDS-2 RDSS signals in order to guarantee the services of old users. Moreover, the new signals also separate civil signals and military signals which are modulated on different carriers to improve their isolation and RDSS service performance. Timing is an important part of RDSS service, which has been widely used in the field of the power, transportation, marine and others. Therefore, the timing accuracy, availability and continuity is an important guarantee for RDSS service. This paper summarizes the principle of one-way and two-way timing, and provides the evaluation method of RDSS timing accuracy, availability and continuity. Based on BDS-3 RDSS signal measurements of system, the performance of one-way timing and two-way timing is analyzed and evaluated for the first time. The results show that: (1) the accuracy of one-way timing and two-way timing is better than 30 ns and 8 ns respectively, which are better than the official claimed accuracy; (2) the RMS of one-way timing accuracy is 5.45 ns, which is 20% smaller than BDS-2, and the availability and continuity are 100%; (3) the RMS of two-way timing accuracy is 3.59 ns, which is 34% smaller than one-way timing, and both of the availability and continuity are 100%; (4) the orbit maneuver of GEO satellite make the one-way timing has 7.68 h recovery, but has no affection on the two-way timing.


2022 ◽  
Vol 14 (2) ◽  
pp. 351
Author(s):  
Fang Yuan ◽  
Marko Repse ◽  
Alex Leith ◽  
Ake Rosenqvist ◽  
Grega Milcinski ◽  
...  

Digital Earth Africa is now providing an operational Sentinel-1 normalized radar backscatter dataset for Africa. This is the first free and open continental scale analysis ready data of this kind that has been developed to be compliant with the CEOS Analysis Ready Data for Land (CARD4L) specification for normalized radar backscatter (NRB) products. Partnership with Sinergise, a European geospatial company and Earth observation data provider, has ensured this dataset is produced efficiently in the cloud infrastructure and can be sustained in the long term. The workflow applies radiometric terrain correction (RTC) to the Sentinel-1 ground range detected (GRD) product, using the Copernicus 30 m digital elevation model (DEM). The method is used to generate data for a range of sites around the world and has been validated as producing good results. This dataset over Africa is made available publicly as a AWS public dataset and can be accessed through the Digital Earth Africa platform and its Open Data Cube API. We expect this dataset to support a wide range of applications, including natural resource monitoring, agriculture, and land cover mapping across Africa.


2022 ◽  
Vol 14 (2) ◽  
pp. 367
Author(s):  
Zhen Zheng ◽  
Bingting Zha ◽  
Yu Zhou ◽  
Jinbo Huang ◽  
Youshi Xuchen ◽  
...  

This paper proposes a single-stage adaptive multi-scale noise filtering algorithm for point clouds, based on feature information, which aims to mitigate the fact that the current laser point cloud noise filtering algorithm has difficulty quickly completing the single-stage adaptive filtering of multi-scale noise. The feature information from each point of the point cloud is obtained based on the efficient k-dimensional (k-d) tree data structure and amended normal vector estimation methods, and the adaptive threshold is used to divide the point cloud into large-scale noise, a feature-rich region, and a flat region to reduce the computational time. The large-scale noise is removed directly, the feature-rich and flat regions are filtered via improved bilateral filtering algorithm and weighted average filtering algorithm based on grey relational analysis, respectively. Simulation results show that the proposed algorithm performs better than the state-of-art comparison algorithms. It was, thus, verified that the algorithm proposed in this paper can quickly and adaptively (i) filter out large-scale noise, (ii) smooth small-scale noise, and (iii) effectively maintain the geometric features of the point cloud. The developed algorithm provides research thought for filtering pre-processing methods applicable in 3D measurements, remote sensing, and target recognition based on point clouds.


2022 ◽  
Vol 14 (2) ◽  
pp. 354
Author(s):  
Jan Kavan ◽  
Guy D. Tallentire ◽  
Mihail Demidionov ◽  
Justyna Dudek ◽  
Mateusz C. Strzelecki

Tidewater glaciers on the east coast of Svalbard were examined for surface elevation changes and retreat rate. An archival digital elevation model (DEM) from 1970 (generated from aerial images by the Norwegian Polar Institute) in combination with recent ArcticDEM were used to compare the surface elevation changes of eleven glaciers. This approach was complemented by a retreat rate estimation based on the analysis of Landsat and Sentinel-2 images. In total, four of the 11 tidewater glaciers became land-based due to the retreat of their termini. The remaining tidewater glaciers retreated at an average annual retreat rate of 48 m year−1, and with range between 10–150 m year−1. All the glaciers studied experienced thinning in their frontal zones with maximum surface elevation loss exceeding 100 m in the ablation areas of three glaciers. In contrast to the massive retreat and thinning of the frontal zones, a minor increase in ice thickness was recorded in some accumulation areas of the glaciers, exceeding 10 m on three glaciers. The change in glacier geometry suggests an important shift in glacier dynamics over the last 50 years, which very likely reflects the overall trend of increasing air temperatures. Such changes in glacier geometry are common at surging glaciers in their quiescent phase. Surging was detected on two glaciers studied, and was documented by the glacier front readvance and massive surface thinning in high elevated areas.


2022 ◽  
Vol 14 (2) ◽  
pp. 370
Author(s):  
Cameron Proctor ◽  
Cedelle Pereira ◽  
Tian Jin ◽  
Gloria Lim ◽  
Yuhong He

Efforts to monitor terrestrial decomposition dynamics at broad spatial scales are hampered by the lack of a cost-effective and scalable means to track the decomposition process. Recent advances in remote sensing have enabled the simulation of litter spectra throughout decomposition for grasses in general, yet unique decomposition pathways are hypothesized to create subtly different litter spectral signatures with unique ecosystem functional significance. The objectives of this study were to improve spectra–decomposition linkages and thereby enable the more comprehensive monitoring of ecosystem processes such as nutrient and carbon cycles. Using close-range hyperspectral imaging, litter spectra and multiple decomposition metrics were concurrently monitored in four classes of naturally decayed litter under four decomposition treatments. The first principal component accounted for approximately 94% of spectral variation in the close-range imagery and was attributed to the progression of decomposition. Decomposition-induced spectral changes were moderately correlated with the leaf carbon to nitrogen ratio (R2 = 0.52) and sodium hydroxide extractables (R2 = 0.45) but had no correlation with carbon dioxide flux. Temperature and humidity strongly influenced the decomposition process but did not influence spectral variability or the patterns of surface decomposition. The outcome of the study is that litter spectra are linked to important metrics of decomposition and thus remote sensing could be utilized to assess decomposition dynamics and the implications for nutrient recycling at broad spatial scales. A secondary study outcome is the need to resolve methodological challenges related to inducing unique decomposition pathways in a lab environment. Improving decomposition treatments that mimic real-world conditions of temperature, humidity, insolation, and the decomposer community will enable an improved understanding of the impacts of climatic change, which are expected to strongly affect microbially mediated decomposition.


2022 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Yanan Guo ◽  
Pengbo Wang ◽  
Jie Chen ◽  
Zhirong Men ◽  
Lei Cui ◽  
...  

High-Resolution Wide-Swath (HRWS) is an important development direction of space-borne Synthetic Aperture Radar (SAR). The two-dimensional spatial variation of the Doppler parameters is the most significant characteristic of the sliding spotlight space-borne SAR system under the requirements of HRWS. Therefore, the compensation of the two-dimensional spatial variation is the most challenging problem faced in the imaging of HRWS situations. The compensatory approach is then proposed to address this problem in this paper. The spatial distribution of the Doppler parameters for the HRWS space-borne SAR data in the sliding spotlight working mode is firstly analyzed, based on which a Spatial-Variant Equivalent Slant Range Model (SV-ESRM) is put forward to accurately formulate the range history for the distributed target. By introducing an azimuth-varying term, the SV-ESRM can precisely describe the range history for not only central targets but also marginal targets, which is more adaptive to the HRWS space-borne SAR requirements. Based on the SV-ESRM, a Modified Hybrid Correlation Algorithm (MHCA) for HRWS space-borne SAR imaging is derived to focus the full-scene data on one single imaging processing. A Doppler phase perturbation incorporated with the sub-aperture method is firstly performed to eliminate the azimuth variation of the Doppler parameters and remove the Doppler spectrum aliasing. Then, an advanced hybrid correlation is employed to achieve the precise differential Range Cell Migration (RCM) correction and Doppler phase compensation. A range phase perturbation method is also utilized to eliminate the range profile defocusing caused by range-azimuth coupling for marginal targets. Finally, a de-rotation processing is performed to remove the azimuth aliasing and the residual azimuth-variance and obtain the precisely focused SAR image. Simulation shows that the SAR echoes for a 20 km × 20 km scene with a 0.25 m resolution in both the range and azimuth directions could be focused precisely via one single imaging processing, which validates the feasibility of the proposed algorithm.


2022 ◽  
Vol 14 (2) ◽  
pp. 373
Author(s):  
Muhammad Bilal ◽  
Alaa Mhawish ◽  
Md. Arfan Ali ◽  
Janet E. Nichol ◽  
Gerrit de Leeuw ◽  
...  

The SEMARA approach, an integration of the Simplified and Robust Surface Reflectance Estimation (SREM) and Simplified Aerosol Retrieval Algorithm (SARA) methods, was used to retrieve aerosol optical depth (AOD) at 550 nm from a Landsat 8 Operational Land Imager (OLI) at 30 m spatial resolution, a Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution, and a Visible Infrared Imaging Radiometer Suite (VIIRS) at 750 m resolution over bright urban surfaces in Beijing. The SEMARA approach coupled (1) the SREM method that is used to estimate the surface reflectance, which does not require information about water vapor, ozone, and aerosol, and (2) the SARA algorithm, which uses the surface reflectance estimated by SREM and AOD measurements obtained from the Aerosol Robotic NETwork (AERONET) site (or other high-quality AOD) as the input to estimate AOD without prior information on the aerosol optical and microphysical properties usually obtained from a look-up table constructed from long-term AERONET data. In the present study, AOD measurements were obtained from the Beijing AERONET site. The SEMARA AOD retrievals were validated against AOD measurements obtained from two other AERONET sites located at urban locations in Beijing, i.e., Beijing_RADI and Beijing_CAMS, over bright surfaces. The accuracy and uncertainties/errors in the AOD retrievals were assessed using Pearson’s correlation coefficient (r), root mean squared error (RMSE), relative mean bias (RMB), and expected error (EE = ± 0.05 ± 20%). EE is the envelope encompassing both absolute and relative errors and contains 68% (±1σ) of the good quality retrievals based on global validation. Here, the EE of the MODIS Dark Target algorithm at 3 km resolution is used to report the good quality SEMARA AOD retrievals. The validation results show that AOD from SEMARA correlates well with AERONET AOD measurements with high correlation coefficients (r) of 0.988, 0.980, and 0.981; small RMSE of 0.08, 0.09, and 0.08; and small RMB of 4.33%, 1.28%, and -0.54%. High percentages of retrievals, i.e., 85.71%, 91.53%, and 90.16%, were within the EE for Landsat 8 OLI, MODIS, and VIIRS, respectively. The results suggest that the SEMARA approach is capable of retrieving AOD over urban areas with high accuracy and small errors using high to medium spatial resolution satellite remote sensing data. This approach can be used for aerosol monitoring over bright urban surfaces such as in Beijing, which is frequently affected by severe dust storms and haze pollution, to evaluate their effects on public health.


Sign in / Sign up

Export Citation Format

Share Document