The Hypothesis of the Efficiency of Financial Markets or Technical Analysis: Checked With The Help Of Artificial Intelligence

2017 ◽  
Vol 5 (1) ◽  
pp. 32-38
Author(s):  
Aleksandr Basovskiy



2021 ◽  
pp. 34-34
Author(s):  
K. V. Ketova ◽  
A.V. Shishova ◽  
S.V. Dorofeeva




2020 ◽  
Author(s):  
Smita Roy Trivedi ◽  
Ashish H. Kyal


2020 ◽  
pp. 108-117
Author(s):  
Николай Ярославович Кушнир ◽  
Катерина Токарева

The paper investigates methods of artificial intelligence in the prognostication and analysis of financial data time series. The usage of well-known methods of artificial intelligence in forecasting and analysis of time series is investigated. Financial time series are inherently highly dispersed, complex, dynamic, nonlinear, nonparametric, and chaotic nature, so large-scale and soft data mining techniques should be used to predict future values. As the scientific literature superficially describes the numerous artificial intelligence algorithms to be used in forecasting financial time series, a detailed analysis of the relevant scientific literature was conducted in scientometric databases Scopus, Science Direct, Google Scholar, IEEExplore, and Springer. It is revealed that the existing scientific publications do not contain a comprehensive analysis of literature sources devoted to the use of artificial intelligence methods in forecasting stock indices. Besides, the analyzed works, which are related in detail to the object of our study, have a limited scope because they focus on only one family of artificial intelligence algorithms, namely artificial neural networks. It was found that the analysis of the use of artificial intelligence systems should be based on two well-known approaches to predicting the behavior of financial markets: fundamental and technical analysis. The first approach is based on the study of economic factors that have a possible impact on market dynamics and more common in long-term planning. Representatives of technical analysis, on the other hand, argue that the price already contains all the fundamental factors that affect it. In this regard, technical analysis involves forecasting the dynamics of price changes based on the analysis of their change in the past, ie time series. Although today there are many developed models for forecasting stock indices using artificial intelligence algorithms, in the scientific literature there is no established methodology that defines the main elements and stages of the algorithm for forecasting financial time series. Therefore, this study has improved the methodology for forecasting financial time series.



Author(s):  
Nijolė MAKNICKIENĖ ◽  
Jovita MASĖNAITĖ ◽  
Viktorija STASYTYTĖ ◽  
Raimonda MARTINKUTĖ-KAULIENĖ

Purpose – The paper analyses two different paradigms of investor behaviour that exist in the financial mar-ket – the herding and contrarian behaviour. The main objective of the paper is to determine which pattern of investor behaviour better reflects the real changes in the prices of financial instruments in the financial markets. Research methodology – Algorithms of technical analysis, deep learning and classification of sentiments were used for the research; data of positions held by investors were analysed. Data mining was performed using “Tweet Sentiment Visualization” tool. Findings – The performed analysis of investor behaviour has revealed that it is more useful to ground financial decisions on the opinion of the investors contradicting the majority. The analysis of the data on the positions held by investors helped to make sure that the herding behaviour could have a negative impact on investment results, as the opinion of the majority of investors is less in line with changes in the prices of financial instruments in the market. Research limitations – The study was conducted using a limited number of investment instruments. In the future, more investment instruments can be analysed and additional forecasting methods, as well as more records in social networks can be used. Practical implications – Identifying which paradigm of investor behaviour is more beneficial to rely on can offer ap-propriate practical guidance for investors in order to invest more effectively in financial markets. Investors could use investor sentiment data to make practical investment decisions. All the methods used complement each other and can be combined into one investment decision strategy. Originality/Value – The study compared the ratio of open positions not only with real price changes but also with data obtained from the known technical analysis, deep learning and sentiment classification algorithms, which has not been done in previous studies. The applied methods allowed to achieve reliable and original results.



Sign in / Sign up

Export Citation Format

Share Document