scholarly journals 210 Improvement of Response Surface Acuuracy in Multidisciplinary Design Optimization of Vehicle

2010 ◽  
Vol 2010.9 (0) ◽  
pp. _210-1_-_210-5_
Author(s):  
Takehisa KOHIRA
Author(s):  
Zhe Jiang ◽  
Weicheng Cui ◽  
Xiaoping Huang

In the traditional design of a Truss Spar, designers usually choose different discipline as major concentration in different design phases. The coupling effect among disciplines can hardly be accounted for. Multidisciplinary design optimization has been proved to be an effective tool for the design of complex engineering systems, which takes all disciplines into account at the same time and exploit coupling effect among disciplines, thereby achieving the optimal system solution. In this paper, a multidisciplinary optimization scheme for a Truss Spar is firstly developed and the Truss Spar is decomposed into four modules: weight module, hydrodynamic module, structure module and stability module. Response surface method is used to replace the high-fidelity analysis to perform the approximate mathematical models of the objective function/constraints as a function of design variables. In order to enhance the accuracy of the predicted optimum, the response surface models are continuously updated using the information obtained from the numerical simulation of latest iterative results. Finally, an optimal design solution, which satisfies all the constraints, is obtained using collaborative optimization. The characteristics of the optimized design solution including hull weight, heave response, stability performance and strength of the bottom deck, are much improved comparing with traditional design.


Author(s):  
Xuan-Binh Lam

Multidisciplinary Design Optimization (MDO) has received a considerable attention in aerospace industry. The article develops a novel framework for Multidisciplinary Design Optimization of aircraft wing. Practically, the study implements a high-fidelity fluid/structure analyses and accurate optimization codes to obtain the wing with best performance. The Computational Fluid Dynamics (CFD) grid is automatically generated using Gridgen (Pointwise) and Catia. The fluid flow analysis is carried out with Ansys Fluent. The Computational Structural Mechanics (CSM) mesh is automatically created by Patran Command Language. The structural analysis is done by Nastran. Aerodynamic pressure is transferred to finite element analysis model using Volume Spline Interpolation. In terms of optimization algorithms, Response Surface Method, Genetic Algorithm, and Simulated Annealing are utilized to get global optimum. The optimization objective functions are minimizing weight and maximizing lift/drag. The design variables are aspect ratio, tapper ratio, sweepback angle. The optimization results demonstrate successful and desiable construction of MDO framework. Keywords: Multidisciplinary Design Optimization; fluid/structure analyses; global optimum; Genetic Algorithm; Response Surface Method.


Sign in / Sign up

Export Citation Format

Share Document