multidisciplinary design
Recently Published Documents


TOTAL DOCUMENTS

1284
(FIVE YEARS 205)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Paul Saves ◽  
Nathalie Bartoli ◽  
Youssef Diouane ◽  
Thierry Lefebvre ◽  
Joseph Morlier ◽  
...  

2021 ◽  
pp. 1-25
Author(s):  
V. Mosca ◽  
S. Karpuk ◽  
A. Sudhi ◽  
C. Badrya ◽  
A. Elham

Abstract The German research Cluster of Excellence SE2A (Sustainable and Energy Efficient Aviation) is investigating different technologies to be implemented in the following decades, to achieve more efficient air transportation. This paper studies the Hybrid Laminar Flow Control (HLFC) using boundary layer suction for drag reduction, combined with other technologies for load and structural weight reduction and a novel full-electric propulsion system. A multidisciplinary design optimisation framework is presented, enabling physics-based analysis and optimisation of a fully electric aircraft wing equipped with HLFC technologies and load alleviation, and new structures and materials. The main focus is on simulation and optimisation of the boundary layer suction and its influence on wing design and optimisation. A quasi three-dimensional aerodynamic analysis is used for drag estimation of the wing. The tool executes the aerofoil analysis using XFOILSUC, which provides accurate drag estimation through boundary layer suction. The optimisation is based on a genetic algorithm for maximum take-off weight (MTOW) minimisation. The optimisation results show that the active flow control applied on the optimised geometry results in more than 45% reduction in aircraft drag coefficient, compared to the same geometry without HLFC technology. The power absorbed for the HLFC suction system implies a battery mass variation lower than 2%, considering the designed range as top-level requirement (TLR).


Author(s):  
Julia Madrid ◽  
Petter Andersson ◽  
Rikard Söderberg ◽  
Kristina Wärmefjord ◽  
Donatas Kveselys ◽  
...  

AbstractThe automation capabilities and virtual tools within engineering disciplines, such as structural mechanics and aerodynamics, enable efficient Multidisciplinary Design Optimization (MDO) approaches to evaluate and optimize the performance of a large number of design variants during early design stages of aircraft components. However, for components that are designed to be welded, in which multiple functional requirements are satisfied by one single welded structure, the automation and simulation capabilities to evaluate welding-producibility and predict welding quality (geometrical deformation, weld bead geometrical quality, cracks, pores, etc) are limited. Besides the complexity of simulating all phenomena within the welding process, one of the main problems in welded integrated components is the existing coupling between welding quality metrics and product geometry. Welding quality can vary for every new product geometrical variant. Thus, there is a need of analyzing rapidly and virtually the interaction and sensitivity coefficients between design parameters and welding quality to predict welding producibility. This paper presents as a result an automated and interactive welding-producibility evaluation approach. This approach incorporates a data-based of welding-producibility criteria, as well as welding simulation and metamodel methods, which enable an interactive and automated evaluation of welding quality of a large number of product variants. The approach has been tested in an industrial use-case involving a multidisciplinary design process of aircraft components. The results from analyzing the welding-producibility of a set of design variants have been plotted together with the analysis results from other engineering disciplines resulting in an interactive tool built with parallel coordinate graphs. The approach proposed allows the generation and reuse of welding producibility information to perform analyses within a big spectrum of the design space in a rapid and interactive fashion, thus supporting designers on dealing with changes and taking fact-based decisions during the multidisciplinary design process.


2021 ◽  
Author(s):  
Nilesh Ghodke ◽  
Prashant Pimpalkar ◽  
Bhaskarjyoti Saikia ◽  
Joshua Miller ◽  
Girish Kulkarni ◽  
...  

Abstract The exhaust manifold is one of the key components of an engine exhaust system. Exhaust manifold simulations are time-consuming as they require modeling of complex thermal loading and multiple non-linearities like friction and plasticity. This proves to be a big constraint for using Multidisciplinary Design Optimization (MDO) for exhaust manifolds as it involves running a large number of models specified by a Design of Experiments (DOE). Also, during the initial phase of design development, it seems reasonable to compromise the accuracy of simulations at the cost of speed for getting correct feedback on design direction. Hence, the main objective of the current work was to a develop simplified analysis process for Thermomechanical Fatigue (TMF) and modal analysis of exhaust manifold. At the concept stage, due to the lack of availability of accurate thermal Boundary Conditions (BCs) and the goal to simplify modeling, thermal BCs are assumed with the help of thermal data history instead of accurate thermal BCs from test cells. Similarly, other aspects such as ‘level of component assembly required’, ‘mechanical loading’, and ‘outputs to be monitored for making design decisions were also investigated to come up with a simplified approach. The proposed approach was quick compared to the conventional one. This approach was implemented on a few heavy-duty and mid-range engine programs to check repeatability. It was observed that the proposed analysis approach provides correct design direction with a significantly reduced computational time of up to 80%. Incorporating the simplified approach for the MDO process has made it more practical and feasible for implementation during the concept design cycle in the early stage of an engine development program.


Sign in / Sign up

Export Citation Format

Share Document