scholarly journals Large eddy simulation of turbulent mixing. 4th report. Coherent structure in the turbulent mixing layer.

1990 ◽  
Vol 56 (530) ◽  
pp. 2879-2883 ◽  
Author(s):  
Toshio MIYAUCHI ◽  
Koichiro KAWANO ◽  
Miki SHINGOU
2018 ◽  
Vol 1053 ◽  
pp. 012072
Author(s):  
Pengju Hu ◽  
Baosen Jiang ◽  
Honglu Pan ◽  
Xiaoli Cheng

2021 ◽  
Vol 11 (24) ◽  
pp. 12127
Author(s):  
Yuwei Cheng ◽  
Qian Chen

Turbulent mixing layers are canonical flow in nature and engineering, and deserve comprehensive studies under various conditions using different methods. In this paper, turbulent mixing layers are investigated using large eddy simulation and dynamic mode decomposition. The accuracy of the computations is verified and validated. Standard dynamic mode decomposition is utilized to flow decomposition, reconstruction and prediction. It was found that the dominant-mode selection criterion based on mode amplitude is more suitable for turbulent mixing layer flow compared with the other three criteria based on singular value, modal energy and integral modal amplitude, respectively. For the mixing layer with random disturbance, the standard dynamic mode decomposition method could accurately reconstruct and predict the region before instability happens, but is not qualified in the regions after that, which implies that improved dynamic mode decomposition methods need to be utilized or developed for the future dynamic mode decomposition of turbulent mixing layers.


Sign in / Sign up

Export Citation Format

Share Document