On Projection of a Positive Definite Matrix on a Cone of Nonnegative Definite Toeplitz Matrices

2018 ◽  
Vol 33 ◽  
pp. 74-82 ◽  
Author(s):  
Katarzyna Filipiak ◽  
Augustyn Markiewicz ◽  
Adam Mieldzioc ◽  
Aneta Sawikowska

We consider approximation of a given positive definite matrix by nonnegative definite banded Toeplitz matrices. We show that the projection on linear space of Toeplitz matrices does not always preserve nonnegative definiteness. Therefore we characterize a convex cone of nonnegative definite banded Toeplitz matrices which depends on the matrix dimensions, and we show that the condition of positive definiteness given by Parter [{\em Numer. Math. 4}, 293--295, 1962] characterizes the asymptotic cone. In this paper we give methodology and numerical algorithm of the projection basing on the properties of a cone of nonnegative definite Toeplitz matrices. This problem can be applied in statistics, for example in the estimation of unknown covariance structures under the multi-level multivariate models, where positive definiteness is required. We conduct simulation studies to compare statistical properties of the estimators obtained by projection on the cone with a given matrix dimension and on the asymptotic cone.

Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2667-2671
Author(s):  
Guoxing Wu ◽  
Ting Xing ◽  
Duanmei Zhou

In this paper, the Hermitian positive definite solutions of the matrix equation Xs + A*X-tA = Q are considered, where Q is a Hermitian positive definite matrix, s and t are positive integers. Bounds for the sum of eigenvalues of the solutions to the equation are given. The equivalent conditions for solutions of the equation are obtained. The eigenvalues of the solutions of the equation with the case AQ = QA are investigated.


2015 ◽  
Vol 52 (1) ◽  
pp. 1-12
Author(s):  
Ryszard Walkowiak

SummaryThis paper considers block designs and row-column designs where the information matrix C has two different nonzero eigenvalues, one of multiplicity 1 and the other of multiplicity h−1, where h is the rank of the matrix C. It was found that for each such design there exists a diagonal positive definite matrix X such that the design is X −1-balanced.


2021 ◽  
Vol 7 (1) ◽  
pp. 384-397
Author(s):  
Yinlan Chen ◽  
◽  
Lina Liu

<abstract><p>In this paper, we consider the common Re-nonnegative definite (Re-nnd) and Re-positive definite (Re-pd) solutions to a pair of linear matrix equations $ A_1XA_1^\ast = C_1, \ A_2XA_2^\ast = C_2 $ and present some necessary and sufficient conditions for their solvability as well as the explicit expressions for the general common Re-nnd and Re-pd solutions when the consistent conditions are satisfied.</p></abstract>


2021 ◽  
Vol 37 ◽  
pp. 549-561
Author(s):  
Paraskevi Fika ◽  
Marilena Mitrouli ◽  
Ondrej Turec

The central mathematical problem studied in this work is the estimation of the quadratic form $x^TA^{-1}x$ for a given symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$. Several methods to estimate $x^TA^{-1}x$ without computing the matrix inverse are proposed. The precision of the estimates is analyzed both analytically and numerically.  


2008 ◽  
Vol 15 (2) ◽  
pp. 241-249
Author(s):  
Lasha Ephremidze ◽  
Gigla Janashia ◽  
Edem Lagvilava

Abstract An analytic proof of Wiener's theorem on factorization of positive definite matrix-functions is proposed.


2018 ◽  
Vol 34 ◽  
pp. 217-230
Author(s):  
Syed M. Raza Shah Naqvi ◽  
Jie Meng ◽  
Hyun-Min Kim

In this paper, the nonlinear matrix equation $X^p+A^TXA=Q$, where $p$ is a positive integer, $A$ is an arbitrary $n\times n$ matrix, and $Q$ is a symmetric positive definite matrix, is considered. A fixed-point iteration with stepsize parameter for obtaining the symmetric positive definite solution of the matrix equation is proposed. The explicit expressions of the normwise, mixed and componentwise condition numbers are derived. Several numerical examples are presented to show the efficiency of the proposed iterative method with proper stepsize parameter and the sharpness of the three kinds of condition numbers.


Sign in / Sign up

Export Citation Format

Share Document