factorization theorem
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Kees Benkendorfer ◽  
Andrew J. Larkoski

Abstract Jet grooming has emerged as a necessary and vital tool for mitigating contamination radiation in jets. The additional restrictions on emissions imposed by the groomer can result in non-smooth behavior of resulting fixed-order distributions of observables measured on groomed jets. As a concrete example, we study the cusp in the hemisphere mass distribution of e+e−→ hadrons events groomed with soft drop. We identify the leading emissions that contribute in the region about the cusp and formulate an all-orders factorization theorem that describes how the cusp is resolved through arbitrary strongly-ordered soft and collinear emissions. The factorization theorem exhibits numerous novel features such as contributions from collinear modes that can cross hemisphere boundaries as well as requiring explicit subtraction of the limit in which resolved emissions become collinear to the hard core. We present resummation of the cusp region through next-to-leading logarithmic accuracy and describe how it can be matched with established factorization theorems that describe other groomed phase space regions.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Alessandro Broggio ◽  
Sebastian Jaskiewicz ◽  
Leonardo Vernazza

Abstract We calculate the generalized soft functions at $$ \mathcal{O} $$ O ($$ {\alpha}_s^2 $$ α s 2 ) at next-to-leading power accuracy for the Drell-Yan process at threshold. The operator definitions of these objects contain explicit insertions of soft gauge and matter fields, giving rise to a dependence on additional convolution variables with respect to the leading power result. These soft functions constitute the last missing ingredient for the validation of the bare factorization theorem to NNLO accuracy. We carry out the calculations by reducing the soft squared amplitudes into a set of canonical master integrals and we employ the method of differential equations to evaluate them. We retain the exact d-dimensional dependence of the convolution variables at the integration boundaries in order to regulate the fixed-order convolution integrals. After combining the soft functions with the relevant collinear functions, we perform checks of the results at the cross-section level against the literature and expansion-by-regions calculations, at NNLO and partly at N3LO, finding agreement.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Vladimir M. Braun ◽  
Yao Ji ◽  
Alexey Vladimirov

Abstract We study chiral-odd quark-antiquark correlation functions suitable for lattice calculations of twist-three nucleon parton distribution functions hL(x) and e(x), and also the twist-two transversity distribution δq(x). The corresponding factorized expressions are derived in terms of the twist-two and twist-three collinear distributions to one-loop accuracy. The results are presented both in position space, as the factorization theorem for Ioffe-time distributions, and in momentum space, for quasi- and pseudo-distributions. We demonstrate that the twist-two part of the hL quasi(pseudo)-distribution can be separated from the twist-three part by virtue of an exact Jaffe-Ji-like relation.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
A. Bochniak ◽  
L. Hadasz ◽  
P. Korcyl ◽  
B. Ruba

Abstract We study a simple lattice model with local symmetry, whose construction is based on a crossed module of finite groups. Its dynamical degrees of freedom are associated both to links and faces of a four-dimensional lattice. In special limits the discussed model reduces to certain known topological quantum field theories. In this work we focus on its dynamics, which we study both analytically and using Monte Carlo simulations. We prove a factorization theorem which reduces computation of correlation functions of local observables to known, simpler models. This, combined with standard Krammers-Wannier type dualities, allows us to propose a detailed phase diagram, which form is then confirmed in numerical simulations. We describe also topological charges present in the model, its symmetries and symmetry breaking patterns. The corresponding order parameters are the Polyakov loop and its generalization, which we call a Polyakov surface. The latter is particularly interesting, as it is beyond the scope of the factorization theorem. As shown by the numerical results, expectation value of Polyakov surface may serve to detects all phase transitions and is sensitive to a value of the topological charge.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ze Long Liu ◽  
Bianka Mecaj ◽  
Matthias Neubert ◽  
Xing Wang

Abstract Building on the recent derivation of a bare factorization theorem for the b-quark induced contribution to the h → γγ decay amplitude based on soft-collinear effective theory, we derive the first renormalized factorization theorem for a process described at subleading power in scale ratios, where λ = mb/Mh « 1 in our case. We prove two refactorization conditions for a matching coefficient and an operator matrix element in the endpoint region, where they exhibit singularities giving rise to divergent convolution integrals. The refactorization conditions ensure that the dependence of the decay amplitude on the rapidity regulator, which regularizes the endpoint singularities, cancels out to all orders of perturbation theory. We establish the renormalized form of the factorization formula, proving that extra contributions arising from the fact that “endpoint regularization” does not commute with renormalization can be absorbed, to all orders, by a redefinition of one of the matching coefficients. We derive the renormalization-group evolution equation satisfied by all quantities in the factorization formula and use them to predict the large logarithms of order $$ {\alpha \alpha}_s^2{L}^k $$ αα s 2 L k in the three-loop decay amplitude, where $$ L=\ln \left(-{M}_h^2/{m}_b^2\right) $$ L = ln − M h 2 / m b 2 and k = 6, 5, 4, 3. We find perfect agreement with existing numerical results for the amplitude and analytical results for the three-loop contributions involving a massless quark loop. On the other hand, we disagree with the results of previous attempts to predict the series of subleading logarithms $$ \sim {\alpha \alpha}_s^n{L}^{2n+1} $$ ∼ αα s n L 2 n + 1 .


2021 ◽  
Vol 7 (1) ◽  
pp. 100-115
Author(s):  
Amar Bougoutaia ◽  
Amar Belacel ◽  
Halima Hamdi

AbstractIn this paper, we introduce and study the concept of positive Cohen p-nuclear multilinear operators between Banach lattice spaces. We prove a natural analog to the Pietsch domination theorem for this class. Moreover, we give like the Kwapień’s factorization theorem. Finally, we investigate some relations with another known classes.


Sign in / Sign up

Export Citation Format

Share Document