Forest Fires, Climate, and Sea-Level Changes in a Coastal Plain-Shallow Marine Succession (Early-Middle Oxfordian Jakobsstigen Formation, North-East Greenland)

2000 ◽  
Vol Vol. 70 (2000), ◽  
Author(s):  
Henrik Vosgerau (1) (*), Jorgen A.
2012 ◽  
Vol 54-55 ◽  
pp. 192-202 ◽  
Author(s):  
Zhengquan Yao ◽  
Zhengtang Guo ◽  
Guoqiao Xiao ◽  
Qiang Wang ◽  
Xuefa Shi ◽  
...  

2006 ◽  
Vol 222 ◽  
pp. 424-438 ◽  
Author(s):  
Kosmas Pavlopoulos ◽  
Panagiotis Karkanas ◽  
Maria Triantaphyllou ◽  
Efthimios Karymbalis ◽  
Theodora Tsourou ◽  
...  

2003 ◽  
Vol 1 ◽  
pp. 893-930 ◽  
Author(s):  
Michael Larsen ◽  
Stefan Piasecki ◽  
Finn Surlyk

A rocky shore developed in early Middle Jurassic times by transgression of the crystalline basement in Milne Land at the western margin of the East Greenland rift basin. The basement is onlapped by shallow marine sandstones of the Charcot Bugt Formation, locally with a thin fluvial unit at the base. The topography of the onlap surface suggests that a relative sea-level rise of at least 300 m took place in Early Bathonian – Middle Oxfordian times. The sea-level rise was punctuated by relative stillstands and falls during which progradation of the shoreline took place. Palynological data tied to the Boreal ammonite stratigraphy have greatly improved time resolution within the Charcot Bugt Formation, and the Jurassic succession in Milne Land can now be understood in terms of genetically-related depositional systems with a proximal to distal decrease in grain size. The sequence stratigraphic interpretation suggests that translation of the depositional systems governed by relative sea-level changes resulted in stacking of sandstone-dominated falling stage deposits in the eastern, basinwards parts of Milne Land, whereas thick, remarkably coarsegrained transgressive systems tract deposits formed along the western basin margin. The bulk of the Charcot Bugt Formation consists of stacked sandstone-dominated shoreface units that prograded during highstands. The overall aggradational to backstepping stacking pattern recognised in the Charcot Bugt Formation is comparable to that in the contemporaneous Pelion Formation of the Jameson Land Basin and in correlative units of the mid-Norway shelf and the Northern North Sea. We suggest that the long-term evolution of the depositional systems may have been controlled by long-term eustatic rise acting in concert with relative sea-level changes reflecting regionally contemporaneous phases of rift initiation, climax and gradual cessation of rifting.


Palaeontology ◽  
2017 ◽  
Vol 60 (4) ◽  
pp. 519-534 ◽  
Author(s):  
Johan Vellekoop ◽  
Femke Holwerda ◽  
Mercedes B. Prámparo ◽  
Veronica Willmott ◽  
Stefan Schouten ◽  
...  

2021 ◽  
Author(s):  
◽  
Glenn Richard Hughes

<p>The convergent tectonic setting of New Zealand has lead to the development of a series of anticlines and troughs resulting from folding and faulting of basement greywacke in southwest North Island. The most extensive of these is the Kairanga Trough spreading from the Horowhenua to the Manawatu, which lies between the uplifting Tararua Range and subsiding South Wanganui Basin. This trough was a major depocentre for fluvial and shallow marine strata during the Quaternary. By utilising a 280m deep borehole from the Kairanga Trough, this thesis investigates how climate and sea level variations affected sedimentation in the north Horowhenua District.   This borehole has recorded a near continuous record of climate and sea level change for the last 340ka. The lower part of the core is a marine sequence representing progressive infilling of the Kairanga Trough during 5th order (c.100ka) glacioeustatic fluctuations, which consequently produced 4 marine cyclothems. Transgressions and subsequent highstand periods are represented by shallow marine sediment, which were followed by fluvial aggradation during lowstand periods, then marine planation during subsequent transgressions. Cycle 1 developed during OIS 9 (340-300ka). Cycles 2 and 3 both formed during OIS 7 as a result of two closely spaced highstands centred around 245ka (OIS 7c) and 200ka (OIS 7a), which were separated by a period of lower sea level around 225ka (OIS 7b) that produced a disconformity. Cycle 4 formed during the Last Interglacial transgression (OIS 5e) and represents an incised valley fill. Progradation of a coastal strandplain and alluvial plain representing the latter stages of infilling of the Kairanga Trough with coastal and terrigenous sediment during the mid to late Last Interglacial and Glacial Periods is recorded in the sediment composing the top part of the borehole.</p>


2021 ◽  
Author(s):  
◽  
Glenn Richard Hughes

<p>The convergent tectonic setting of New Zealand has lead to the development of a series of anticlines and troughs resulting from folding and faulting of basement greywacke in southwest North Island. The most extensive of these is the Kairanga Trough spreading from the Horowhenua to the Manawatu, which lies between the uplifting Tararua Range and subsiding South Wanganui Basin. This trough was a major depocentre for fluvial and shallow marine strata during the Quaternary. By utilising a 280m deep borehole from the Kairanga Trough, this thesis investigates how climate and sea level variations affected sedimentation in the north Horowhenua District.   This borehole has recorded a near continuous record of climate and sea level change for the last 340ka. The lower part of the core is a marine sequence representing progressive infilling of the Kairanga Trough during 5th order (c.100ka) glacioeustatic fluctuations, which consequently produced 4 marine cyclothems. Transgressions and subsequent highstand periods are represented by shallow marine sediment, which were followed by fluvial aggradation during lowstand periods, then marine planation during subsequent transgressions. Cycle 1 developed during OIS 9 (340-300ka). Cycles 2 and 3 both formed during OIS 7 as a result of two closely spaced highstands centred around 245ka (OIS 7c) and 200ka (OIS 7a), which were separated by a period of lower sea level around 225ka (OIS 7b) that produced a disconformity. Cycle 4 formed during the Last Interglacial transgression (OIS 5e) and represents an incised valley fill. Progradation of a coastal strandplain and alluvial plain representing the latter stages of infilling of the Kairanga Trough with coastal and terrigenous sediment during the mid to late Last Interglacial and Glacial Periods is recorded in the sediment composing the top part of the borehole.</p>


Sign in / Sign up

Export Citation Format

Share Document