scholarly journals Study on One-Dimensional Wood Board Cutting Stock Problem Based on Adaptive Genetic Algorithm

Author(s):  
Wenshu Lin ◽  
Dan Mu ◽  
Jinzhuo Wu
2014 ◽  
Vol 34 (2) ◽  
pp. 165-187 ◽  
Author(s):  
Silvio Alexandre de Araujo ◽  
Kelly Cristina Poldi ◽  
Jim Smith

2021 ◽  
Vol 11 (17) ◽  
pp. 7790
Author(s):  
Min Tang ◽  
Ying Liu ◽  
Fenglong Ding ◽  
Zhengguang Wang

In the production process for wooden furniture, the raw material costs account for more than 50% of furniture costs, and the utilization rate of raw materials depends mainly on the layout scheme. Therefore, a reasonable layout is an important measure to reduce furniture costs. This paper investigates the solid wood board cutting stock problem (CSP) and establishes an optimization model, with the goal of the highest possible utilization rate for original boards. An ant colony-immune genetic algorithm (AC-IGA) is designed to solve this model. The solutions of the ant colony algorithm are used as the initial population of the immune genetic algorithm, and the optimal solution is obtained using the immune genetic algorithm after multiple iterations are transformed into the accumulation of global pheromones, which improves the search ability and ensures the solution quality. The layout process of the solid wood board is abstracted into the construction process of the solution. At the same time, in order to prevent premature convergence, several improved methods, such as a global pheromone hybrid update and adaptive crossover probability, are proposed. Comparative experiments are designed to verify the feasibility and effectiveness of the AC-IGA, and the experimental results show that the AC-IGA has better solution precision and global search ability compared with the ant colony algorithm (ACA), genetic algorithm (GA), grey wolf optimizer (GWO), and polar bear optimization (PBO). The utilization rate increased by more than 2.308%, which provides effective theoretical and methodological support for furniture enterprises to improve economic benefits.


Author(s):  
Julliany Sales Brandão ◽  
Alessandra Martins Coelho ◽  
João Flávio V. Vasconcellos ◽  
Luiz Leduíno de Salles Neto ◽  
André Vieira Pinto

This paper presents the application of the one new approach using Genetic Algorithm in solving One-Dimensional Cutting Stock Problems in order to minimize two objectives, usually conflicting, i.e., the number of processed objects and setup while simultaneously treating them as a single goal. The model problem, the objective function, the method denominated SingleGA10 and the steps used to solve the problem are also presented. The obtained results of the SingleGA10 are compared to the following methods: SHP, Kombi234, ANLCP300 and Symbio10, found in literature, verifying its capacity to find feasible and competitive solutions. The computational results show that the proposed method, which only uses a genetic algorithm to solve these two objectives inversely related, provides good results.


2004 ◽  
Vol 31 (2) ◽  
pp. 321-332 ◽  
Author(s):  
Adham A Shahin ◽  
Ossama M Salem

In the United States, vast amounts of construction waste are produced every year. Construction waste accounts for a significant portion of the municipal waste stream of the United States. One-dimensional stocks are one of the major contributors to construction waste. Cutting one-dimensional stocks to suit needed project lengths results in trim losses, which are the main causes of one-dimensional stock waste. Although part of such waste is recyclable such as steel waste, reduction in the generation of waste can enhance the stock material usage and thereby increase the profit potential of the company. The traditional optimization techniques (i.e., linear programming and integer programming) suffer some drawbacks when they are used to solve the one-dimensional cutting stock problem (CSP). In this paper, a genetic algorithm (GA) model for solving the one-dimensional CSP (GA1D) is presented. Three real life case studies from a local steel workshop in Fargo, North Dakota have been studied, and their solutions (cutting schedules) using the GA approach are presented and compared with the actual workshop cutting schedules. The comparison shows a high potential of savings that could be achieved.Key words: construction waste management, waste reduction, genetic algorithm, GA, cutting stock problem, CSP, optimization, reinforcement steel optimization, rebar optimization.


2011 ◽  
Vol 2 (1) ◽  
pp. 34-48
Author(s):  
Julliany Sales Brandão ◽  
Alessandra Martins Coelho ◽  
João Flávio V. Vasconcellos ◽  
Luiz Leduíno de Salles Neto ◽  
André Vieira Pinto

This paper presents the application of the one new approach using Genetic Algorithm in solving One-Dimensional Cutting Stock Problems in order to minimize two objectives, usually conflicting, i.e., the number of processed objects and setup while simultaneously treating them as a single goal. The model problem, the objective function, the method denominated SingleGA10 and the steps used to solve the problem are also presented. The obtained results of the SingleGA10 are compared to the following methods: SHP, Kombi234, ANLCP300 and Symbio10, found in literature, verifying its capacity to find feasible and competitive solutions. The computational results show that the proposed method, which only uses a genetic algorithm to solve these two objectives inversely related, provides good results.


Sign in / Sign up

Export Citation Format

Share Document