Full-featured ground vehicle mobility analysis using different soil moisture sources

2017 ◽  
Vol 3 (1) ◽  
pp. 19
Author(s):  
Maria T. Stevens ◽  
George B. McKinley ◽  
Farshid Vahedifard
Author(s):  
Tamer Wasfy ◽  
Hatem Wasfy ◽  
Paramsothy Jayakumar ◽  
Srinivas Sanikommu

Abstract A finite element vegetation model is presented for predicting the dynamic interaction of ground vehicles with vegetation. The purpose of the model is to predict ground vehicle mobility over vegetation covered terrains. The types of vegetation can range from small diameter highly compliant stems to large stiff trees. Those include various types of vegetation such as grass, crops, shrubs/bushes, small trees, and large trees. Mobility measures which can be predicted include maximum safe vehicle speed along a specified path, tire slip, and fuel consumption. The ground vehicles are modeled using high-fidelity multibody dynamics models. The vegetation stems are modeled using an arrangement of thin and/or thick beam finite elements. The thin beam model uses the torsional spring beam formulation for small flexible vegetation and only includes the axial and bending beam responses. The thick beam model includes axial, bending, torsional, and shear beam responses and uses a lumped parameter beam element which connects two rigid body type nodes. The vegetation model includes the effects of normal contact and friction with the vehicle and between stems, stem breaking, and stem aerodynamic forces.


2010 ◽  
Vol 48 (sup1) ◽  
pp. 139-156 ◽  
Author(s):  
George Thomas ◽  
Vladimir V. Vantsevich

Sign in / Sign up

Export Citation Format

Share Document