scholarly journals A comparison of ground vehicle mobility analysis based on soil moisture time series datasets from WindSat, LIS, and in situ sensors

2016 ◽  
Vol 65 ◽  
pp. 49-59 ◽  
Author(s):  
Maria T. Stevens ◽  
George B. McKinley ◽  
Farshid Vahedifard
2020 ◽  
Author(s):  
Adrian Wicki ◽  
Manfred Stähli

<p>In mountainous regions, rainfall-triggered landslides pose a serious risk to people and infrastructure, particularly due to the short time interval between activation and failure and their widespread occurrence. Landslide early warning systems (LEWS) have demonstrated to be a valuable tool to inform decision makers about the imminent landslide danger and to move people or goods at risk to safety. While most operational LEWS are based on empirically derived rainfall exceedance thresholds, recent studies have demonstrated an improvement of the forecast quality after the inclusion of in-situ soil moisture measurements.</p><p>The use of in-situ soil moisture sensors bears specific limitations, such as the sensitivity to local conditions, the disturbance of the soil profile during installation, and potential data quality issues and inhomogeneity of long-term measurements. Further, the installation and operation of monitoring networks is laborious and costly. In this respect, making use of modelled soil moisture could efficiently increase information density, and it would further allow to forecast soil moisture dynamics. On the other hand, numerical simulations are restricted by assumptions and simplifications related to the soil hydraulic properties and the water transfer in the soil profile. Ultimately, the question arises how reliable and representative landslide early warnings based on soil moisture simulations are compared to warnings based on measurements.</p><p>To answer this, we applied a state-of-the-art one-dimensional heat and mass transfer model (CoupModel, Jansson 2012) to generate time series of soil water content at 35 sites in Switzerland. The same sites and time period (2008-2018) were used in a previous study to compare the temporal variability of in-situ measured soil moisture to the regional landslide activity (currently under review in <em>Landslides</em>). The same statistical framework for soil moisture dynamics analysis, landslide probability modelling and landslide early warning performance analysis was applied to the modelled and the measured soil moisture time series. This allowed to directly compare the forecast skill of modelling-based with measurements-based landslide early warning.</p><p>In this contribution, we will highlight three steps of model applications: First, a straight-forward simulation to all 35 sites without site-specific calibration and using reference soil layering only, to assess the forecast skill as if no prior measurements were available. Second, a model simulation after calibration at each site using the existing soil moisture time series and information on the soil texture to assess the benefit of a thorough calibration process on the forecast skill. Finally, an application of the model to additional sites in Switzerland where no soil moisture measurements are available to assess the effect of increasing the soil moisture information density on the overall forecast skill.</p>


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3038
Author(s):  
Kade D. Flynn ◽  
Briana M. Wyatt ◽  
Kevin J. McInnes

Soil moisture is a critical variable influencing plant water uptake, rainfall-runoff partitioning, and near-surface atmospheric conditions. Soil moisture measurements are typically made using either in-situ sensors or by collecting samples, both methods which have a small spatial footprint or, in recent years, by remote sensing satellites with large spatial footprints. The cosmic ray neutron sensor (CRNS) is a proximal technology which provides estimates of field-averaged soil moisture within a radius of up to 240 m from the sensor, offering a much larger sensing footprint than point measurements and providing field-scale information that satellite soil moisture observations cannot capture. Here we compare volumetric soil moisture estimates derived from a novel, less expensive lithium (Li) foil-based CRNS to those from a more expensive commercially available 3He-based CRNS, to measurements from in-situ sensors, and to four intensive surveys of soil moisture in a field with highly variable soil texture. Our results indicate that the accuracy of the Li foil CRNS is comparable to that of the commercially available sensors (MAD = 0.020 m3 m−3), as are the detection radius and depth. Additionally, both sensors capture the influence of soil textural variability on field-average soil moisture. Because novel Li foil-based CRNSs are comparable in accuracy to and much less expensive than current commercially available CRNSs, there is strong potential for future adoption by land and water managers and increased adoption by researchers interested in obtaining field-scale estimates of soil moisture to improve water conservation and sustainability.


2021 ◽  
Author(s):  
Navid Jadidoleslam ◽  
Brian K Hornbuckle ◽  
Witold F. Krajewski ◽  
Ricardo Mantilla ◽  
Michael H. Cosh

L-band microwave satellite missions provide soil moisture information potentially useful for streamflow and hence flood predictions. However, these observations are also sensitive to the presence of vegetation that makes satellite soil moisture estimations prone to errors. In this study, the authors evaluate satellite soil moisture estimations from SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture Ocean Salinity), and two distributed hydrologic models with measurements from in~situ sensors in the Corn Belt state of Iowa, a region dominated by annual row crops of corn and soybean. First, the authors compare model and satellite soil moisture products across Iowa using in~situ data for more than 30 stations. Then, they compare satellite soil moisture products with state-wide model-based fields to identify regions of low and high agreement. Finally, the authors analyze and explain the resulting spatial patterns with MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation indices and SMAP vegetation optical depth. The results indicate that satellite soil moisture estimations are drier than those provided by the hydrologic model and the spatial bias depends on the intensity of row-crop agriculture. The work highlights the importance of developing a revised SMAP algorithm for regions of intensive row-crop agriculture to increase SMAP utility in the real-time streamflow predictions.


2021 ◽  
Author(s):  
Xavier Perrot ◽  
Jacqueline Boutin ◽  
Jean Luc Vergely ◽  
Frédéric Rouffi ◽  
Adrien Martin ◽  
...  

<p>This study is performed in the frame of the European Space Agency (ESA) Climate Change Initiative (CCI+) for Sea Surface Salinity (SSS), which aims at generating global SSS fields from all available satellite L-band radiometer measurements over the longest possible period with a great stability. By combining SSS from the Soil Moisture and Ocean Salinity, SMOS, Aquarius and the Soil Moisture Active Passive, SMAP missions, CCI+SSS fields (Boutin et al. 2020) are the only one to provide a 10 year time series of satellite salinity with such quality: global rms difference of weekly 25x25km<span>2 </span>CCI+SSS with respect to in situ Argo SSS of 0.17 pss, correlation coefficient of 0.97 (see https://pimep.ifremer.fr/diffusion/analyses/mdb-database/GO/cci-l4-esa-merged-oi-v2.31-7dr/argo/report/pimep-mdb-report_GO_cci-l4-esa-merged-oi-v2.31-7dr_argo_20201215.pdf). Nevertheless, we found that some systematic biases remained. In this presentation, we will show how they will be reduced in the next CCI+SSS version.</p><p>The key satellite mission ensuring the longest time period, since 2010, at global scale, is SMOS. We implemented a re-processing of the whole SMOS dataset by changing some key points. Firstly we replace the Klein and Swift (1977) dielectric constant parametrization by the new Boutin et al. (2020) one. Secondly we change the reference dataset used to perform a vicarious calibration over the south east Pacific Ocean (the so-called Ocean Target Transformation), by using Argo interpolated fields (ISAS, Gaillard et al. 2016) contemporaneous to the satellite measurements instead of the World Ocean Atlas climatology. And thirdly the auxiliary data (wind, SST, atmospheric parameters) used as priors in the retrieval scheme, which come in the original SMOS processing from the ECMWF forecast model were replaced by ERA5 reanalysis.</p><p>Our results are showing a quantitative improvement in the stability of the SMOS CCI+SSS with respect to in situ measurements for all the period as well as a decrease of the spread of the difference between SMOS and in situ salinity measurements.</p><p>Bibliography:</p><p>J. Boutin et al. (2020), Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements, IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2020.3030488.</p><p>F. Gaillard et al. (2016), In Situ–Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height, Journal of Climate, vol. 29, no. 4, pp. 1305-1323, doi: 10.1175/JCLI-D-15-0028.1.</p><p>L. Klein and C. Swift (1977), An improved model for the dielectric constant of sea water at microwave frequencies, IEEE Transactions on Antennas and Propagation, vol. 25, no. 1, pp. <span>104-111, </span>doi: 10.1109/JOE.1977.1145319.</p><p>Data reference:</p><p>J. Boutin et al. (2020): ESA Sea Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_cci): Weekly sea surface salinity product, v2.31, for 2010 to 2019. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/eacb7580e1b54afeaabb0fd2b0a53828</p>


2021 ◽  
Author(s):  
Rémi Madelon ◽  
Nemesio Rodriguez-Fernandez ◽  
Robin Van Der Shalie ◽  
Yann Kerr ◽  
Tracy Scalon ◽  
...  

<p>Merging data from different instruments is required to construct long time data records of soil moisture (SM). This is the goal of projects such as the ESA Climate Change Initiative (CCI) for SM (Gruber et al., 2019), which uses both active and passive microwave sensors. Currently, the GLDAS v2.1 model is used as reference to re-scale active and passive time series by matching their Cumulative Density Function (CDF) to that of the model. Removing the dependency on models is important, in particular for data assimilation applications into hydrological or climate models, and it has been proposed (Van der Schalie et al., 2018) to use L-band data from one of the two instruments specifically designed to measure SM, ESA Soil Moisture and Ocean Salinity (SMOS) and NASA Soil Moisture Active Passive (SMAP) satellites, as reference to re-scale other time series.<br>To investigate this approach, AMSR-2 SM time series obtained from C1-, C2- and X-band observations using LPRM (Land Parameter Retrieval Model) were re-scaled by CDF-matching (Brocca et al., 2011) using different SMAP and SMOS official (SMAP L2 V005, SMOS L3 V300, SMOS NRT V100&V200) and research (SMOS IC V103) SM products as well as the SMAP and SMOS LPRM v6 SM data used by the ESA CCI. The time series re-scaled using L-band remote sensing data were compared to those re-scaled using GLDAS and were evaluated against in situ measurements at several hundred sites retrieved from the International Soil Moisture Network (Dorigo et al., 2011). The results were analyzed as a function of the land cover class and the Koppen-Geiger climate classification.<br>Overall, AMSR-2 time series re-scaled using SMAP L2, SMAP LPRM and SMOS IC data sets as reference gave the best correlations with respect to in situ measurements, similar to those obtained by the time series re-scaled using GLDAS and slightly better than those of the original AMSR-2 time series. These results imply that different SMAP and SMOS products could actually be used to replace GLDAS as reference for the re-scaling of other sensors time series within the ESA CCI. However, one must bear in mind that this study is limited to the re-scaling of AMSR-2 data at a few hundred sites.<br>For a more detailed assessment of the L-band data set to be used for a global re-scaling, it is necessary to investigate other effects such as the spatial coverage or the time series length. SMAP spatial coverage is better than that of SMOS in regions affected by radio frequency interference. In contrast, the length of SMAP time series can be too short to capture the long term SM variability for climate applications in some regions. The CDF of SMOS time series computed from the date of SMAP launch is significantly different to those of the full length SMOS time series in some regions of the Globe. Possible ways of using a coherent SMAP/SMOS L-band data set will be discussed.</p>


2018 ◽  
Vol 19 (1) ◽  
pp. 245-265 ◽  
Author(s):  
Dai Matsushima ◽  
Jun Asanuma ◽  
Ichirow Kaihotsu

Abstract Thermal inertia is a physical parameter that evaluates soil thermal properties with an emphasis on the stability of the temperature when the soil is affected by heating/cooling. Thermal inertia can be retrieved from a heat budget formulation as a parameter when the time series of Earth surface temperature and forcing variables, such as insolation and air temperature, are given. In this study, a two-layer, linearized heat budget model was employed for the retrieval of thermal inertia over a grassland in a semiarid region. Application of different formulations to the aerodynamic conductance with respect to atmospheric stability significantly improved the accuracy of the thermal inertia retrieval. The retrieved values of thermal inertia were well correlated with in situ surface soil moisture at multiple ground stations. The daily time series of thermal inertia–derived soil moisture qualitatively agreed well with in situ soil moisture after antecedent rainfalls, which was found after fitting the time series to an exponentially decaying function. On the contrary, AMSR2 soil moisture mostly did not agree with in situ soil moisture. The results of the estimation showed high accuracy: the root-mean-square error was 0.038 m3 m−3 compared to the in situ data and was applied to an area of 2° × 2° in which the in situ observation locations were included. The spatiotemporal distribution of surface soil moisture was mapped at a 0.03° × 0.03° spatial resolution in the study area as 10- or 11-day averages over a vegetation growth period of 2012.


Sign in / Sign up

Export Citation Format

Share Document