scholarly journals On the quantum periods of del Pezzo surfaces with ⅓ (1, 1) singularities

2018 ◽  
Vol 18 (3) ◽  
pp. 303-336
Author(s):  
Alessandro Oneto ◽  
Andrea Petracci

AbstractIn earlier joint work with collaborators we gave a conjectural classification of a broad class of orbifold del Pezzo surfaces, using Mirror Symmetry. We proposed that del Pezzo surfaces X with isolated cyclic quotient singularities such that X admits a ℚ-Gorenstein toric degeneration correspond via Mirror Symmetry to maximally mutable Laurent polynomials f in two variables, and that the quantum period of such a surface X, which is a generating function for Gromov–Witten invariants of X, coincides with the classical period of its mirror partner f.In this paper we give strong evidence for this conjecture. Contingent on conjectural generalisations of the Quantum Lefschetz theorem and the Abelian/non-Abelian correspondence, we compute many quantum periods for del Pezzo surfaces with $\begin{array}{} \frac{1}{3} \end{array} $(1, 1) singularities. Our computations also give strong evidence for the extension of these two principles to the orbifold setting.

Author(s):  
Tom Coates ◽  
Alexander M. Kasprzyk ◽  
Giuseppe Pitton ◽  
Ketil Tveiten

We introduce a class of Laurent polynomials, called maximally mutable Laurent polynomials (MMLPs), which we believe correspond under mirror symmetry to Fano varieties. A subclass of these, called rigid, are expected to correspond to Fano varieties with terminal locally toric singularities. We prove that there are exactly 10 mutation classes of rigid MMLPs in two variables; under mirror symmetry these correspond one-to-one with the 10 deformation classes of smooth del Pezzo surfaces. Furthermore, we give a computer-assisted classification of rigid MMLPs in three variables with reflexive Newton polytope; under mirror symmetry these correspond one-to-one with the 98 deformation classes of three-dimensional Fano manifolds with very ample anti-canonical bundle. We compare our proposal to previous approaches to constructing mirrors to Fano varieties, and explain why mirror symmetry in higher dimensions necessarily involves varieties with terminal singularities. Every known mirror to a Fano manifold, of any dimension, is a rigid MMLP.


2015 ◽  
Vol 144 (2) ◽  
pp. 513-527 ◽  
Author(s):  
Mohammad Akhtar ◽  
Tom Coates ◽  
Alessio Corti ◽  
Liana Heuberger ◽  
Alexander Kasprzyk ◽  
...  

2019 ◽  
Vol 30 (12) ◽  
pp. 1950068
Author(s):  
Andrey Trepalin

Let [Formula: see text] be any field of characteristic zero, [Formula: see text] be a del Pezzo surface and [Formula: see text] be a finite subgroup in [Formula: see text]. In this paper, we study when the quotient surface [Formula: see text] can be non-rational over [Formula: see text]. Obviously, if there are no smooth [Formula: see text]-points on [Formula: see text] then it is not [Formula: see text]-rational. Therefore, under assumption that the set of smooth [Formula: see text]-points on [Formula: see text] is not empty we show that there are few possibilities for non-[Formula: see text]-rational quotients. The quotients of del Pezzo surfaces of degree [Formula: see text] and greater are considered in the author’s previous papers. In this paper, we study the quotients of del Pezzo surfaces of degree [Formula: see text]. We show that they can be non-[Formula: see text]-rational only for the trivial group or cyclic groups of order [Formula: see text], [Formula: see text] and [Formula: see text]. For the trivial group and the group of order [Formula: see text], we show that both [Formula: see text] and [Formula: see text] are not [Formula: see text]-rational if the [Formula: see text]-invariant Picard number of [Formula: see text] is [Formula: see text]. For the groups of order [Formula: see text] and [Formula: see text], we construct examples of both [Formula: see text]-rational and non-[Formula: see text]-rational quotients of both [Formula: see text]-rational and non-[Formula: see text]-rational del Pezzo surfaces of degree [Formula: see text] such that the [Formula: see text]-invariant Picard number of [Formula: see text] is [Formula: see text]. As a result of complete classification of non-[Formula: see text]-rational quotients of del Pezzo surfaces we classify surfaces that are birationally equivalent to quotients of [Formula: see text]-rational surfaces, and obtain some corollaries concerning fields of invariants of [Formula: see text].


2016 ◽  
Vol 59 (2) ◽  
pp. 463-472
Author(s):  
Chin-Yi Lin

AbstractWe develop a new non-vanishing theorem for del Pezzo surfaces with quotient singularities.


2017 ◽  
Vol 69 (1) ◽  
pp. 163-225 ◽  
Author(s):  
Kento FUJITA ◽  
Kazunori YASUTAKE

2017 ◽  
Vol 5 ◽  
Author(s):  
ALEXANDER KASPRZYK ◽  
BENJAMIN NILL ◽  
THOMAS PRINCE

We introduce a concept of minimality for Fano polygons. We show that, up to mutation, there are only finitely many Fano polygons with given singularity content, and give an algorithm to determine representatives for all mutation-equivalence classes of such polygons. This is a key step in a program to classify orbifold del Pezzo surfaces using mirror symmetry. As an application, we classify all Fano polygons such that the corresponding toric surface is qG-deformation-equivalent to either (i) a smooth surface; or (ii) a surface with only singularities of type$1/3(1,1)$.


2006 ◽  
Vol 166 (3) ◽  
pp. 537-582 ◽  
Author(s):  
Denis Auroux ◽  
Ludmil Katzarkov ◽  
Dmitri Orlov

2013 ◽  
Vol 149 (11) ◽  
pp. 1839-1855 ◽  
Author(s):  
Raf Bocklandt

AbstractIn their paper [Exceptional sequences of invertible sheaves on rational surfaces, Compositio Math. 147 (2011), 1230–1280], Hille and Perling associate to every cyclic full strongly exceptional sequence of line bundles on a toric weak del Pezzo surface a toric system, which defines a new toric surface. We interpret this construction as an instance of mirror symmetry and extend it to a duality on the set of toric weak del Pezzo surfaces equipped with a cyclic full strongly exceptional sequence.


Sign in / Sign up

Export Citation Format

Share Document