Forum of Mathematics Sigma
Latest Publications


TOTAL DOCUMENTS

344
(FIVE YEARS 146)

H-INDEX

12
(FIVE YEARS 2)

Published By Cambridge University Press

2050-5094, 2050-5094

2022 ◽  
Vol 10 ◽  
Author(s):  
Russell Lodge ◽  
Yusheng Luo ◽  
Sabyasachi Mukherjee

Abstract In this article, we establish an explicit correspondence between kissing reflection groups and critically fixed anti-rational maps. The correspondence, which is expressed using simple planar graphs, has several dynamical consequences. As an application of this correspondence, we give complete answers to geometric mating problems for critically fixed anti-rational maps.


2022 ◽  
Vol 10 ◽  
Author(s):  
Joe Kramer-Miller

Abstract The purpose of this article is to prove a ‘Newton over Hodge’ result for finite characters on curves. Let X be a smooth proper curve over a finite field $\mathbb {F}_q$ of characteristic $p\geq 3$ and let $V \subset X$ be an affine curve. Consider a nontrivial finite character $\rho :\pi _1^{et}(V) \to \mathbb {C}^{\times }$ . In this article, we prove a lower bound on the Newton polygon of the L-function $L(\rho ,s)$ . The estimate depends on monodromy invariants of $\rho $ : the Swan conductor and the local exponents. Under certain nondegeneracy assumptions, this lower bound agrees with the irregular Hodge filtration introduced by Deligne. In particular, our result further demonstrates Deligne’s prediction that the irregular Hodge filtration would force p-adic bounds on L-functions. As a corollary, we obtain estimates on the Newton polygon of a curve with a cyclic action in terms of monodromy invariants.


2022 ◽  
Vol 10 ◽  
Author(s):  
Tom Bachmann ◽  
Paul Arne Østvær

Abstract For an infinity of number rings we express stable motivic invariants in terms of topological data determined by the complex numbers, the real numbers and finite fields. We use this to extend Morel’s identification of the endomorphism ring of the motivic sphere with the Grothendieck–Witt ring of quadratic forms to deeper base schemes.


2021 ◽  
Vol 9 ◽  
Author(s):  
L. Göttsche ◽  
M. Kool ◽  
R. A. Williams

Abstract We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic 2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates between K-theoretic Donaldson invariants studied by Göttsche and Nakajima-Yoshioka and K-theoretic Vafa-Witten invariants introduced by Thomas and also studied by Göttsche and Kool. We verify our conjectures in many examples (for example, on K3 surfaces).


2021 ◽  
Vol 9 ◽  
Author(s):  
Younghan Bae ◽  
Tim-Henrik Buelles

Abstract We prove a conjecture of Maulik, Pandharipande and Thomas expressing the Gromov–Witten invariants of K3 surfaces for divisibility 2 curve classes in all genera in terms of weakly holomorphic quasi-modular forms of level 2. Then we establish the holomorphic anomaly equation in divisibility 2 in all genera. Our approach involves a refined boundary induction, relying on the top tautological group of the moduli space of smooth curves, together with a degeneration formula for the reduced virtual fundamental class with imprimitive curve classes. We use double ramification relations with target variety as a new tool to prove the initial condition. The relationship between the holomorphic anomaly equation for higher divisibility and the conjectural multiple cover formula of Oberdieck and Pandharipande is discussed in detail and illustrated with several examples.


2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin Antieau ◽  
Bhargav Bhatt ◽  
Akhil Mathew

Abstract We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in characteristic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral sequences need not degenerate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Graf ◽  
Martin Schwald

Abstract Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group ${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lea Boßmann ◽  
Sören Petrat ◽  
Robert Seiringer

Abstract We consider a system of N bosons in the mean-field scaling regime for a class of interactions including the repulsive Coulomb potential. We derive an asymptotic expansion of the low-energy eigenstates and the corresponding energies, which provides corrections to Bogoliubov theory to any order in $1/N$ .


2021 ◽  
Vol 9 ◽  
Author(s):  
Alex Chirvasitu ◽  
Ryo Kanda ◽  
S. Paul Smith

Abstract The elliptic algebras in the title are connected graded $\mathbb {C}$ -algebras, denoted $Q_{n,k}(E,\tau )$ , depending on a pair of relatively prime integers $n>k\ge 1$ , an elliptic curve E and a point $\tau \in E$ . This paper examines a canonical homomorphism from $Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety $X_{n/k}$ for $Q_{n,k}(E,\tau )$ . When $X_{n/k}$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees $\le 3$ and the noncommutative scheme $\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $X_{n/k}=E^g$ and $\tau =0$ , the results about $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism $\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.


Sign in / Sign up

Export Citation Format

Share Document