Unique Strong Solutions and V -Attractors of a Three Dimensional System of Globally Modified Navier-Stokes Equations

2006 ◽  
Vol 6 (3) ◽  
Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Peter E. Kloeden

AbstractWe prove the existence and uniqueness of strong solutions of a three dimensional system of globally modified Navier-Stokes equations. The flattening property is used to establish the existence of global V -attractors and a limiting argument is then used to obtain the existence of bounded entire weak solutions of the three dimensional Navier-Stokes equations with time independent forcing.

2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Peter E. Kloeden

AbstractIn this paper we improve Theorem 7 in [1] which deals with the existence and uniqueness of solutions of the three dimensional globally modified Navier-Stokes equations.


2010 ◽  
Vol 20 (09) ◽  
pp. 2869-2883 ◽  
Author(s):  
TOMÁS CARABALLO ◽  
JOSÉ REAL ◽  
ANTONIO M. MÁRQUEZ

We prove the existence and uniqueness of strong solutions of a three-dimensional system of globally modified Navier–Stokes equations with delay in the locally Lipschitz case. The asymptotic behavior of solutions, and the existence of pullback attractor are also analyzed.


2010 ◽  
Vol 14 (2) ◽  
pp. 655-673 ◽  
Author(s):  
Pedro Marín-Rubio ◽  
◽  
Antonio M. Márquez-Durán ◽  
José Real ◽  

Author(s):  
James C. Robinson

There is currently no proof guaranteeing that, given a smooth initial condition, the three-dimensional Navier–Stokes equations have a unique solution that exists for all positive times. This paper reviews the key rigorous results concerning the existence and uniqueness of solutions for this model. In particular, the link between the regularity of solutions and their uniqueness is highlighted. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.


Sign in / Sign up

Export Citation Format

Share Document