Addendum to the Paper “Unique Strong Solutions and V -Attractors of a Three Dimensional System of Globally Modified Navier-Stokes Equations″, Advanced Nonlinear Studies 6 (2006), 411-436

2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Peter E. Kloeden

AbstractIn this paper we improve Theorem 7 in [1] which deals with the existence and uniqueness of solutions of the three dimensional globally modified Navier-Stokes equations.

2006 ◽  
Vol 6 (3) ◽  
Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Peter E. Kloeden

AbstractWe prove the existence and uniqueness of strong solutions of a three dimensional system of globally modified Navier-Stokes equations. The flattening property is used to establish the existence of global V -attractors and a limiting argument is then used to obtain the existence of bounded entire weak solutions of the three dimensional Navier-Stokes equations with time independent forcing.


2010 ◽  
Vol 20 (09) ◽  
pp. 2869-2883 ◽  
Author(s):  
TOMÁS CARABALLO ◽  
JOSÉ REAL ◽  
ANTONIO M. MÁRQUEZ

We prove the existence and uniqueness of strong solutions of a three-dimensional system of globally modified Navier–Stokes equations with delay in the locally Lipschitz case. The asymptotic behavior of solutions, and the existence of pullback attractor are also analyzed.


Author(s):  
James C. Robinson

There is currently no proof guaranteeing that, given a smooth initial condition, the three-dimensional Navier–Stokes equations have a unique solution that exists for all positive times. This paper reviews the key rigorous results concerning the existence and uniqueness of solutions for this model. In particular, the link between the regularity of solutions and their uniqueness is highlighted. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.


Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Takeshi Taniguchi

We prove the existence and uniqueness of solutions for a stochastic version of the three-dimensional Lagrangian averaged Navier–Stokes equation in a bounded domain. To this end, we previously prove some existence and uniqueness results for an abstract stochastic equation and justify that our model falls within this framework.


2010 ◽  
Vol 14 (2) ◽  
pp. 655-673 ◽  
Author(s):  
Pedro Marín-Rubio ◽  
◽  
Antonio M. Márquez-Durán ◽  
José Real ◽  

In this article, for 0 ≤m<∞ and the index vectors q=(q_1,q_2 ,q_3 ),r=(r_1,r_2,r_3) where 1≤q_i≤∞,1<r_i<∞ and 1≤i≤3, we study new results of Navier-Stokes equations with Coriolis force in the rotational framework in mixed-norm Sobolev-Lorentz spaces H ̇^(m,r,q) (R^3), which are more general than the classical Sobolev spaces. We prove the existence and uniqueness of solutions to the Navier-Stokes equations (NSE) under Coriolis force in the spaces L^∞([0, T]; H ̇^(m,r,q) ) by using topological arguments, the fixed point argument and interpolation inequalities. We have achieved new results compared to previous research in the Navier-Stokes problems.


Sign in / Sign up

Export Citation Format

Share Document