scholarly journals Strong shift equivalence and algebraic K-theory

2019 ◽  
Vol 2019 (752) ◽  
pp. 63-104 ◽  
Author(s):  
Mike Boyle ◽  
Scott Schmieding

Abstract For a semiring \mathcal{R} , the relations of shift equivalence over \mathcal{R} ( \textup{SE-}\mathcal{R} ) and strong shift equivalence over \mathcal{R} ( \textup{SSE-}\mathcal{R} ) are natural equivalence relations on square matrices over \mathcal{R} , important for symbolic dynamics. When \mathcal{R} is a ring, we prove that the refinement of \textup{SE-}\mathcal{R} by \textup{SSE-}\mathcal{R} , in the \textup{SE-}\mathcal{R} class of a matrix A, is classified by the quotient NK_{1}(\mathcal{R})/E(A,\mathcal{R}) of the algebraic K-theory group NK_{1}(\mathcal{R}) . Here, E(A,\mathcal{R}) is a certain stabilizer group, which we prove must vanish if A is nilpotent or invertible. For this, we first show for any square matrix A over \mathcal{R} that the refinement of its \textup{SE-}\mathcal{R} class into \textup{SSE-}\mathcal{R} classes corresponds precisely to the refinement of the \mathrm{GL}(\mathcal{R}[t]) equivalence class of I-tA into \mathrm{El}(\mathcal{R}[t]) equivalence classes. We then show this refinement is in bijective correspondence with NK_{1}(\mathcal{R})/E(A,\mathcal{R}) . For a general ring \mathcal{R} and A invertible, the proof that E(A,\mathcal{R}) is trivial rests on a theorem of Neeman and Ranicki on the K-theory of noncommutative localizations. For \mathcal{R} commutative, we show \cup_{A}E(A,\mathcal{R})=NSK_{1}(\mathcal{R}) ; the proof rests on Nenashev’s presentation of K_{1} of an exact category.

1986 ◽  
Vol 6 (1) ◽  
pp. 81-97 ◽  
Author(s):  
Ki Hang Kim ◽  
Fred W. Roush

AbstractShift equivalence is the relation between A, B that there exists S, R, n > 0 with RA = BR, AS = SB, SR = An, RS = Bn. Strong shift equivalence is the equivalence relation generated by these equations with n = 1. We prove that for many Boolean matrices strong shift equivalence is characterized by shift equivalence and a trace condition. However, we also show that if A is strongly shift equivalent to B, then there exists a homomorphism from an iterated directed edge graph of A to the graph of B preserving the traces of powers. This yields results on colourings of iterated directed edge graphs and might distinguish new strong equivalence classes.


1983 ◽  
Vol 3 (4) ◽  
pp. 501-508 ◽  
Author(s):  
Kirby A. Baker

AbstractThe concept of strong shift equivalence of square non-negative integral matrices has been used by R. F. Williams to characterize topological isomorphism of the associated topological Markov chains. However, not much has been known about sufficient conditions for strong shift equivalence even for 2×2 matrices (other than those of unit determinant). The main theorem of this paper is: If A and B are positive 2×2 integral matrices of non-negative determinant and are similar over the integers, then A and B are strongly shift equivalent.


2015 ◽  
Vol 31 (3) ◽  
pp. 280-292
Author(s):  
Sainkupar Marwein Mawiong ◽  
Himadri Kumar Mukerjee

2013 ◽  
Vol 126 (1) ◽  
pp. 65-115 ◽  
Author(s):  
Mike Boyle ◽  
K. H. Kim ◽  
F. W. Roush

2008 ◽  
Vol 167 (1) ◽  
pp. 315-346 ◽  
Author(s):  
Paul S. Muhly ◽  
David Pask ◽  
Mark Tomforde

Sign in / Sign up

Export Citation Format

Share Document