positive matrices
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 31)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 55 (1) ◽  
pp. 109-123
Author(s):  
Harry Oviedo

This paper addresses the positive semi-deffnite procrustes problem (PSDP). The PSDP corresponds to a least squares problem over the set of symmetric and semi-deffnite positive matrices. These kinds of problems appear in many applications such as structure analysis, signal processing, among others. A non-monotone spectral projected gradient algorithm is proposed to obtain a numerical solution for the PSDP. The proposed algorithm employs the Zhang and Hager's non-monotone technique in combination with the Barzilai and Borwein's step size to accelerate convergence. Some theoretical results are presented. Finally, numerical experiments are performed to demonstrate the effectiveness and efficiency of the proposed method, and comparisons are made with other state-of-the-art algorithms.


Author(s):  
Gabriele Eichfelder ◽  
Patrick Groetzner

AbstractIn a single-objective setting, nonconvex quadratic problems can equivalently be reformulated as convex problems over the cone of completely positive matrices. In small dimensions this cone equals the cone of matrices which are entrywise nonnegative and positive semidefinite, so the convex reformulation can be solved via SDP solvers. Considering multiobjective nonconvex quadratic problems, naturally the question arises, whether the advantage of convex reformulations extends to the multicriteria framework. In this note, we show that this approach only finds the supported nondominated points, which can already be found by using the weighted sum scalarization of the multiobjective quadratic problem, i.e. it is not suitable for multiobjective nonconvex problems.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 519
Author(s):  
Satvik Singh ◽  
Ion Nechita

We analyze bipartite matrices and linear maps between matrix algebras, which are respectively, invariant and covariant, under the diagonal unitary and orthogonal groups' actions. By presenting an expansive list of examples from the literature, which includes notable entries like the Diagonal Symmetric states and the Choi-type maps, we show that this class of matrices (and maps) encompasses a wide variety of scenarios, thereby unifying their study. We examine their linear algebraic structure and investigate different notions of positivity through their convex conic manifestations. In particular, we generalize the well-known cone of completely positive matrices to that of triplewise completely positive matrices and connect it to the separability of the relevant invariant states (or the entanglement breaking property of the corresponding quantum channels). For linear maps, we provide explicit characterizations of the stated covariance in terms of their Kraus, Stinespring, and Choi representations, and systematically analyze the usual properties of positivity, decomposability, complete positivity, and the like. We also describe the invariant subspaces of these maps and use their structure to provide necessary and sufficient conditions for separability of the associated invariant bipartite states.


Sign in / Sign up

Export Citation Format

Share Document