Variations of Hodge Structure and Algebraic Cycles

Author(s):  
Claire Voisin
Author(s):  
Eduardo Cattani ◽  
Fouad El Zein ◽  
Phillip A. Griffiths ◽  
Lê Dung Tráng

This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch–Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and does not require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch–Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck's algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne's theorem on absolute Hodge cycles), and variation of mixed Hodge structures.


2020 ◽  
Vol 2020 (762) ◽  
pp. 167-194
Author(s):  
Salim Tayou

AbstractWe prove the equidistribution of the Hodge locus for certain non-isotrivial, polarized variations of Hodge structure of weight 2 with {h^{2,0}=1} over complex, quasi-projective curves. Given some norm condition, we also give an asymptotic on the growth of the Hodge locus. In particular, this implies the equidistribution of elliptic fibrations in quasi-polarized, non-isotrivial families of K3 surfaces.


2012 ◽  
Vol 206 ◽  
pp. 1-24
Author(s):  
Chris Peters ◽  
Morihiko Saito

AbstractLetXbe an irreducible complex analytic space withj:U ↪ Xan immersion of a smooth Zariski-open subset, and let 𝕍 be a variation of Hodge structure of weightnoverU. Assume thatXis compact Kähler. Then, provided that the local monodromy operators at infinity are quasi-unipotent,IHk(X, 𝕍) is known to carry a pure Hodge structure of weightk+n, whileHk(U, 𝕍) carries a mixed Hodge structure of weight at leastk+n. In this note it is shown that the image of the natural mapIHk(X, 𝕍) →Hk(U, 𝕍) is the lowest-weight part of this mixed Hodge structure. In the algebraic case this easily follows from the formalism of mixed sheaves, but the analytic case is rather complicated, in particular when the complementX — Uis not a hypersurface.


2019 ◽  
Vol 62 (1) ◽  
pp. 209-221
Author(s):  
Zheng Zhang

AbstractLet${\mathcal{D}}$be the irreducible Hermitian symmetric domain of type$D_{2n}^{\mathbb{H}}$. There exists a canonical Hermitian variation of real Hodge structure${\mathcal{V}}_{\mathbb{R}}$of Calabi–Yau type over ${\mathcal{D}}$. This short note concerns the problem of giving motivic realizations for ${\mathcal{V}}_{\mathbb{R}}$. Namely, we specify a descent of${\mathcal{V}}_{\mathbb{R}}$from$\mathbb{R}$to$\mathbb{Q}$and ask whether the$\mathbb{Q}$-descent of${\mathcal{V}}_{\mathbb{R}}$can be realized as sub-variation of rational Hodge structure of those coming from families of algebraic varieties. When$n=2$, we give a motivic realization for ${\mathcal{V}}_{\mathbb{R}}$. When$n\geqslant 3$, we show that the unique irreducible factor of Calabi–Yau type in$\text{Sym}^{2}{\mathcal{V}}_{\mathbb{R}}$can be realized motivically.


Sign in / Sign up

Export Citation Format

Share Document