scholarly journals The index conjecture for symmetric spaces

Author(s):  
Jürgen Berndt ◽  
Carlos Olmos

AbstractIn 1980, Oniščik [A. L. Oniščik, Totally geodesic submanifolds of symmetric spaces, Geometric methods in problems of algebra and analysis. Vol. 2, Yaroslav. Gos. Univ., Yaroslavl’ 1980, 64–85, 161] introduced the index of a Riemannian symmetric space as the minimal codimension of a (proper) totally geodesic submanifold. He calculated the index for symmetric spaces of rank {\leq 2}, but for higher rank it was unclear how to tackle the problem. In [J. Berndt, S. Console and C. E. Olmos, Submanifolds and holonomy, 2nd ed., Monogr. Res. Notes Math., CRC Press, Boca Raton 2016], [J. Berndt and C. Olmos, Maximal totally geodesic submanifolds and index of symmetric spaces, J. Differential Geom. 104 2016, 2, 187–217], [J. Berndt and C. Olmos, The index of compact simple Lie groups, Bull. Lond. Math. Soc. 49 2017, 5, 903–907], [J. Berndt and C. Olmos, On the index of symmetric spaces, J. reine angew. Math. 737 2018, 33–48], [J. Berndt, C. Olmos and J. S. Rodríguez, The index of exceptional symmetric spaces, Rev. Mat. Iberoam., to appear] we developed several approaches to this problem, which allowed us to calculate the index for many symmetric spaces. Our systematic approach led to a conjecture, formulated first in [J. Berndt and C. Olmos, Maximal totally geodesic submanifolds and index of symmetric spaces, J. Differential Geom. 104 2016, 2, 187–217], for how to calculate the index. The purpose of this paper is to verify the conjecture.


2018 ◽  
Vol 2018 (737) ◽  
pp. 33-48 ◽  
Author(s):  
Jürgen Berndt ◽  
Carlos Olmos

AbstractLetMbe an irreducible Riemannian symmetric space. The index ofMis the minimal codimension of a (nontrivial) totally geodesic submanifold ofM. We prove that the index is bounded from below by the rank of the symmetric space. We also classify the irreducible Riemannian symmetric spaces whose index is less than or equal to 3.



Author(s):  
Elisabetta Colombo ◽  
Paola Frediani

AbstractIn this paper we give a bound on the dimension of a totally geodesic submanifold of the moduli space of polarised abelian varieties of a given dimension, which is contained in the Prym locus of a (possibly) ramified double cover. This improves the already known bounds. The idea is to adapt the techniques introduced by the authors in collaboration with A. Ghigi and G. P. Pirola for the Torelli map to the case of the Prym maps of (ramified) double covers.



2018 ◽  
Vol 12 (02) ◽  
pp. 465-489
Author(s):  
Shi Wang

Let [Formula: see text] be a higher rank symmetric space of non-compact type where [Formula: see text]. We define the splitting rank of [Formula: see text], denoted by [Formula: see text], to be the maximal dimension of a totally geodesic submanifold [Formula: see text] which splits off an isometric [Formula: see text]-factor. We compute explicitly the splitting rank for each irreducible symmetric space. For an arbitrary (not necessarily irreducible) symmetric space, we show that the comparison map [Formula: see text] is surjective in degrees [Formula: see text], provided [Formula: see text] has no direct factors of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. This generalizes the result of [J.-F. Lafont and S. Wang, Barycentric straightening and bounded cohomology, to appear in J. Eur. Math. Soc.] regarding Dupont’s problem.



2014 ◽  
Vol 11 (09) ◽  
pp. 1460033 ◽  
Author(s):  
Stanisław Ewert-Krzemieniewski

In a tangent bundle endowed with g-natural metric G we investigate submanifolds defined by a vector field given on a base manifold. We give a sufficient condition for a vector field on M to define totally geodesic submanifold in (TM, G). The parallel vector field is discussed in more detail.





1968 ◽  
Vol 32 ◽  
pp. 5-20 ◽  
Author(s):  
Arthur A. Sagle

In the study of nonassociative algebras various “triple systems” frequently arise from the associator function and other multilinear objects. In particular Lie triple systems arise in the study of Jordan algebras and a generalization of a Lie triple system arises in Malcev algebras. Lie triple systems also are used to study totally geodesic submanifolds of a Riemannian symmetric space. We shall show how a generalization of Lie triple systems also arises from the study of curvature and geodesies of a torsion free connexion on a manifold and bring out the relation of this to various nonassociative algebras.



1992 ◽  
Vol 34 (2) ◽  
pp. 221-228 ◽  
Author(s):  
John M. Burns

In recent years a new approach to the study of compact symmetric spaces has been taken by Nagano and Chen [10]. This approach assigned to each pair of antipodal points on a closed geodesic a pair of totally geodesic submanifolds. In this paper we will show how these totally geodesic submanifolds can be used in conjunction with a theorem of Bott to compute homotopy in compact symmetric spaces. Some of the results are already known (see [1], [5], [11] for example) but we include them here for completeness and to illustrate this unified approach. We also exhibit a connection between the second homotopy group of a compact symmetric space and the multiplicity of the highest root. Using this in conjunction with a theorem of J. H. Cheng [6] we obtain a topological characterization of quaternionic symmetric spaces with antiquaternionic involutive isometry. The author would like to thank Prof T. Nagano for all his help and his detailed descriptions of the totally geodesic submanifolds mentioned above.



Sign in / Sign up

Export Citation Format

Share Document