base manifold
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 13)

H-INDEX

6
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 2996
Author(s):  
Cornelia-Livia Bejan ◽  
Şemsi Eken Meriç ◽  
Erol Kılıç

A submersion from an almost contact Riemannian manifold to an almost Hermitian manifold, acting on the horizontal distribution by preserving both the metric and the structure, is, roughly speaking a contact-complex Riemannian submersion. This paper deals mainly with a contact-complex Riemannian submersion from an η-Ricci soliton; it studies when the base manifold is Einstein on one side and when the fibres are η-Einstein submanifolds on the other side. Some results concerning the potential are also obtained here.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanlin Li ◽  
Akram Ali ◽  
Fatemah Mofarreh ◽  
Nadia Alluhaibi

In this paper, we show that if the Laplacian and gradient of the warping function of a compact warped product submanifold Ω p + q in the hyperbolic space ℍ m − 1 satisfy various extrinsic restrictions, then Ω p + q has no stable integral currents, and its homology groups are trivial. Also, we prove that the fundamental group π 1 Ω p + q is trivial. The restrictions are also extended to the eigenvalues of the warped function, the integral Ricci curvature, and the Hessian tensor. The results obtained in the present paper can be considered as generalizations of the Fu–Xu theorem in the framework of the compact warped product submanifold which has the minimal base manifold in the corresponding ambient manifolds.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1587 ◽  
Author(s):  
Yanlin Li ◽  
Pişcoran Laurian-Ioan ◽  
Akram Ali ◽  
Ali H. Alkhaldi

In this paper, we prove that, for compact warped product submanifolds Mn in an Euclidean space En+k, there are no stable p-currents, homology groups are vanishing, and M3 is homotopic to the Euclidean sphere S3 under various extrinsic restrictions, involving the eigenvalue of the warped function, integral Ricci curvature, and the Hessian tensor. The results in this paper can be considered an extension of Xin’s work in the framework of a compact warped product submanifold, when the base manifold is minimal in ambient manifolds.


Author(s):  
Şemsi Eken Meriç

In this paper, we first introduce a new notion [Formula: see text]-tensor on Hermitian manifold and particularly, we present some geometric characterizations of such a tensor on the Kaehler manifold. Here, we investigate the Kaehler submersion whose total space is equipped with the [Formula: see text]-tensor and obtain some results. Also, we deal with a Kaehler submersion with totally geodesic fibers such that the total space admits [Formula: see text]-Ricci soliton and [Formula: see text]-tensor. Finally, we give necessary conditions for which any fiber and base manifold of Kaehler submersion is [Formula: see text]-Ricci soliton or [Formula: see text]-Kaehler-Einstein.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Marcela Popescu ◽  
Paul Popescu

The aim of this paper is to construct Noether invariants for Lagrangian non-holonomic dynamics with affine or nonlinear constraints, considered to be adapted to a foliation on the base manifold. A set of illustrative examples is given, including linear and nonlinear Appell mechanical systems.


Author(s):  
Panagiotis Polymerakis

AbstractFor Riemannian submersions with fibers of basic mean curvature, we compare the spectrum of the total space with the spectrum of a Schrödinger operator on the base manifold. Exploiting this concept, we study submersions arising from actions of Lie groups. In this context, we extend the state-of-the-art results on the bottom of the spectrum under Riemannian coverings. As an application, we compute the bottom of the spectrum and the Cheeger constant of connected, amenable Lie groups.


Author(s):  
Arezo Tarviji ◽  
Morteza Mirmohammad Rezaei

We compare the Dirac operator on transitive Riemannian Lie algebroid equipped by spin or complex spin structure with the one defined on to its base manifold‎. Consequently we derive upper eigenvalue bounds of Dirac operator on base manifold of spin Lie algebroid twisted with the spinor bundle of kernel bundle‎.


2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Madeleine Jotz Lean ◽  
Kirill C. H. Mackenzie

<p style='text-indent:20px;'>The core diagram of a double Lie algebroid consists of the core of the double Lie algebroid, together with the two core-anchor maps to the sides of the double Lie algebroid. If these two core-anchors are surjective, then the double Lie algebroid and its core diagram are called <i>transitive</i>. This paper establishes an equivalence between transitive double Lie algebroids, and transitive core diagrams over a fixed base manifold. In other words, it proves that a transitive double Lie algebroid is completely determined by its core diagram.</p><p style='text-indent:20px;'>The comma double Lie algebroid associated to a morphism of Lie algebroids is defined. If the latter morphism is one of the core-anchors of a transitive core diagram, then the comma double algebroid can be quotiented out by the second core-anchor, yielding a transitive double Lie algebroid, which is the one that is equivalent to the transitive core diagram.</p><p style='text-indent:20px;'>Brown's and Mackenzie's equivalence of transitive core diagrams (of Lie groupoids) with transitive double Lie groupoids is then used in order to show that a transitive double Lie algebroid with integrable sides and core is automatically integrable to a transitive double Lie groupoid.</p>


2020 ◽  
Vol 35 (18) ◽  
pp. 2050088
Author(s):  
M. Lotfizadeh

It has been constructed the fuzzy Dirac and chirality operators on fuzzy [Formula: see text] which is the base manifold of the principal fibration [Formula: see text]. Using the fuzzy Ginsparg–Wilson algebra, it has been studied the gauged fuzzy Dirac and chirality operators in instanton sector. It has been shown that they have correct commutative limit in the limit case when noncommutative parameter [Formula: see text] tends to infinity.


Sign in / Sign up

Export Citation Format

Share Document