Improved Differential Evolution for Combined Heat and Power Economic Dispatch

2016 ◽  
Vol 17 (2) ◽  
pp. 151-163 ◽  
Author(s):  
C. Jena ◽  
M. Basu ◽  
C. K. Panigrahi

Abstract This paper presents an improved differential evolution to solve non-smooth non-convex combined heat and power economic dispatch (CHPED) problem. Valve-point loading and prohibited operating zones of conventional thermal generators are taken into account. Differential evolution (DE) exploits the differences of randomly sampled pairs of objective vectors for its mutation process. Consequently the variation between vectors will outfit the objective function toward the optimization process and therefore provides efficient global optimization capability. However, although DE is shown to be precise, fast as well as robust, its search efficiency will be impaired during solution process with fast descending diversity of population. This paper proposes Gaussian random variable instead of scaling factor which improves search efficiency. The effectiveness of the proposed method has been verified on four test systems. The results of the proposed approach are compared with those obtained by other evolutionary methods. It is found that the proposed improved differential evolution based approach is able to provide better solution.

2012 ◽  
Vol 229-231 ◽  
pp. 2701-2707
Author(s):  
Chao Lung Chiang

This paper proposes a hybrid differential evolution (HDE) for power economic dispatch (PED) considering units with prohibited operating zones (POZ) and spinning reserve. The HDE equipped with an accelerated operation and a migration operation can efficiently search and actively explore solutions. The multiplier updating (MU) is introduced to handle the equality and inequality constraints of the system. To show the advantages of the proposed algorithm, one example is investigated, and the computational results of the proposed method are compared with that of the previous methods. The proposed approach integrates the HDE and the MU, revealing that the proposed approach has the following merits - ease of implementation; applicability to non-convex fuel cost functions; better effectiveness than previous methods; better efficiency than differential evolution with the MU (DE-MU), and the requirement for only a small population in applying the optimal PED problem of generators with POZ and spinning reserve.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ahmed R. Ginidi ◽  
Abdallah M. Elsayed ◽  
Abdullah M. Shaheen ◽  
Ehab E. Elattar ◽  
Ragab A. El-Sehiemy

Sign in / Sign up

Export Citation Format

Share Document