Abstract
The development of renewable energy is increasing nowadays. Besides, the development of energy conversion systems that can work at high efficiency also increases along with the decreasing availability of fossil energy. The fuel cell is an electrochemical device that converts chemical reaction energy directly into direct current electrical energy. The use of fuel cells as power generating in housing has also increased rapidly, especially in developed countries. This study aims to develop a model and simulation for the Polymer Exchange Membrane Fuel Cell (PEMFC) system with a working temperature of 165 °C) using Aspen Plus simulation. In this analysis, the model and simulation developed are used to predict the amount of fuel needed when used in housing as an electricity generator and obtain a monetary value for the monthly fuel procurement. The PEMFC system is designed to generate power up to 0.60 kW by consuming hydrogen fuel with a current density of 0.02 A/cm2. The hydrogen consumed by the PEMFC system is around 0.030 kg/hour, with a monthly cost of hydrogen consumption by the system is Rp. 2,052,000. Meanwhile, the monthly electricity from the national grid (PLN) bill costs around Rp. 569,261 (in the year 2019). In comparing the energy bill, at the moment, the fuel cost for PEMFC as a power generation system is much more expensive than PLN’s electricity consumption costs due to the high hydrogen fuel cost.