scholarly journals Parabolic Marcinkiewicz integrals on product spaces and extrapolation

2016 ◽  
Vol 14 (1) ◽  
pp. 649-660 ◽  
Author(s):  
Mohammed Ali ◽  
Mohammed Al-Dolat

Abstract In this paper, we study the the parabolic Marcinkiewicz integral ${\cal M}_{\Omega, h}^{{\rho _{1,}}{\rho _2}}$ on product domains Rn × Rm (n, m ≥ 2). Lp estimates of such operators are obtained under weak conditions on the kernels. These estimates allow us to use an extrapolation argument to obtain some new and improved results on parabolic Marcinkiewicz integral operators.


2004 ◽  
Vol 2004 (72) ◽  
pp. 4001-4011
Author(s):  
Ahmad Al-Salman

We study theLpmapping properties of a class of Marcinkiewicz integral operators on product domains with rough kernels supported by subvarieties.



2020 ◽  
Vol 53 (1) ◽  
pp. 44-57
Author(s):  
Mohammed Ali ◽  
Qutaibeh Katatbeh

AbstractIn this article, we study the generalized parabolic parametric Marcinkiewicz integral operators { {\mathcal M} }_{{\Omega },h,{\Phi },\lambda }^{(r)} related to polynomial compound curves. Under some weak conditions on the kernels, we establish appropriate estimates of these operators. By the virtue of the obtained estimates along with an extrapolation argument, we give the boundedness of the aforementioned operators from Triebel-Lizorkin spaces to Lp spaces under weaker conditions on Ω and h. Our results represent significant improvements and natural extensions of what was known previously.



2002 ◽  
Vol 132 (3) ◽  
pp. 523-530
Author(s):  
KYUNG SOO RIM

With the cancellation property of the bounded kernel, we prove that the generalized Marcinkiewicz integral operator is bounded on L2 (ℝn×ℝm) for all dimensions n, m.



2003 ◽  
Vol 46 (3) ◽  
pp. 669-677 ◽  
Author(s):  
Yong Ding ◽  
Yibiao Pan

AbstractIn this paper the authors establish the $L^p$ boundedness for several classes of Marcinkiewicz integral operators with kernels satisfying a condition introduced by Grafakos and Stefanov in Indiana Univ. Math. J.47 (1998), 455–469.AMS 2000 Mathematics subject classification: Primary 42B25; 42B99



2015 ◽  
Vol 99 (3) ◽  
pp. 380-398 ◽  
Author(s):  
FENG LIU ◽  
SUZHEN MAO

In an extrapolation argument, we prove certain $L^{p}\,(1<p<\infty )$ estimates for nonisotropic Marcinkiewicz operators associated to surfaces under the integral kernels given by the elliptic sphere functions ${\rm\Omega}\in L(\log ^{+}L)^{{\it\alpha}}({\rm\Sigma})$ and the radial function $h\in {\mathcal{N}}_{{\it\beta}}(\mathbb{R}^{+})$. As applications, the corresponding results for parametric Marcinkiewicz integral operators related to area integrals and Littlewood–Paley $g_{{\it\lambda}}^{\ast }$-functions are given.





Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 886 ◽  
Author(s):  
Mohammed Ali ◽  
Oqlah Al-Refai

In this article, the boundedness of the generalized parametric Marcinkiewicz integral operators M Ω , ϕ , h , ρ ( r ) is considered. Under the condition that Ω is a function in L q ( S n - 1 ) with q ∈ ( 1 , 2 ] , appropriate estimates of the aforementioned operators from Triebel–Lizorkin spaces to L p spaces are obtained. By these estimates and an extrapolation argument, we establish the boundedness of such operators when the kernel function Ω belongs to the block space B q 0 , ν - 1 ( S n - 1 ) or in the space L ( l o g L ) ν ( S n - 1 ) . Our results represent improvements and extensions of some known results in generalized parametric Marcinkiewicz integrals.



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ahmad Al-Salman

<p style='text-indent:20px;'>Marcinkiewicz integral operators on product domains defined by translates determined by twisted surfaces are introduced. Maximal functions along twisted surfaces are also introduced. Conditions on the underlined surfaces implying that the corresponding Marcinkiewicz integral operators map <inline-formula><tex-math id="M1">\begin{document}$ L^{p}\rightarrow L^{p} $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ 1&lt;p&lt;\infty $\end{document}</tex-math></inline-formula> are obtained. A general method involving lacunary families of multi-indices is developed.</p>



2005 ◽  
Vol 167 (3) ◽  
pp. 227-234 ◽  
Author(s):  
H. Al-Qassem ◽  
A. Al-Salman ◽  
L. C. Cheng ◽  
Y. Pan


Sign in / Sign up

Export Citation Format

Share Document