scholarly journals Control of Secretion by Temporal Patterns of Action Potentials in Adrenal Chromaffin Cells

2003 ◽  
Vol 23 (35) ◽  
pp. 11235-11243 ◽  
Author(s):  
Kailai Duan ◽  
Xiao Yu ◽  
Chen Zhang ◽  
Zhuan Zhou
1996 ◽  
Vol 76 (2) ◽  
pp. 1195-1211 ◽  
Author(s):  
B. Hollins ◽  
S. R. Ikeda

1. Current- and voltage-clamp studies were conducted on isolated rat adrenal chromaffin cells to identify the voltage-dependent ion channels mediating inward currents. 2. Mean resting membrane potential of the isolated cells was -62 +/- 3 (SE) mV. Evoked action potentials were both Na+ and Ca2+ based, and whole cell voltage-clamp studies in normal saline revealed an inward-rectifier-type current. 3. Na+ channels were studied in isolation and showed a half-inactivation of -60 +/- 2 mV with a slope factor of -6 mV and a half-activation of -26.8 +/- 2 mV with a slope factor of 6.5 +/- 0.7 mV. 4. Isolated Ca2+ currents, elicited in 10 mM external Ca2+, revealed a T-type current in a subset of cells. Ca2+ currents were sensitive to both N- and L-type channel antagonists, and blockade of the current by the L-type channel antagonist nimodipine and the N-type channel antagonist omega-conotoxin GVIA revealed a third Ca2+-current component that was unaffected by the P-type channel antagonist omega-agatoxin IVA. 5. Ca2+ currents were facilitated 5-20% by a depolarizing prepulse, and facilitation was completely blocked by nimodipine. The effects of the dihydropyridine L-type channel agonist, (+)202-791 and depolarizing prepulses on the currents were additive. 6. The results of this study show that the properties of voltage-dependent ion channels in rat chromaffin cells differ from those reported in their counterparts in bovine chromaffin cells. Na+ channels differ in activation and inactivation properties and Ca2+ channels differ in activation, sensitivity to antagonists, and the magnitude of voltage-dependent facilitation.


Author(s):  
Joe A. Mascorro ◽  
Robert D. Yates

Extra-adrenal chromaffin organs (abdominal paraganglia) constitute rich sources of catecholamines. It is believed that these bodies contain norepinephrine exclusively. However, the present workers recently observed epinephrine type granules in para- ganglion cells. This report investigates catecholamine containing granules in rabbit paraganglia at the ultrastructural level.New Zealand white rabbits (150-170 grams) were anesthetized with 50 mg/kg Nembutal (IP) and perfused with 3% glutaraldehyde buffered with 0.2M sodium phosphate, pH 7.3. The retroperitoneal tissue blocks were removed and placed in perfusion fluid for 4 hours. The abdominal paraganglia were dissected from the blocks, diced, washed in phosphate buffer and fixed in 1% osmic acid buffered with phosphate. In other animals, the glutaraldehyde perfused tissue blocks were immersed for 1 hour in 3% glutaraldehyde/2.5% potassium iodate buffered as before. The paraganglia were then diced, separated into two vials and washed in the buffer. A portion of this tissue received osmic acid fixation.


1997 ◽  
Vol 73 ◽  
pp. 226
Author(s):  
Kazuo Minakuchi ◽  
Hitoshi Houchi ◽  
Masanori Yoshizumi ◽  
Yasuko Ishimura ◽  
Kyoji Morita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document