Tissue Specific
Recently Published Documents





2021 ◽  
Vol 2021 ◽  
pp. 1-16
Joice de Faria Poloni ◽  
Thaiane Rispoli ◽  
Maria Lucia Rossetti ◽  
Cristiano Trindade ◽  
José Eduardo Vargas

Cystic fibrosis (CF) is an autosomal recessive disorder, caused by diverse genetic variants for the CF transmembrane conductance regulator (CFTR) protein. Among these, p.Phe508del is the most prevalent variant. The effects of this variant on the physiology of each tissue remains unknown. This study is aimed at predicting cell signaling pathways present in different tissues of fibrocystic patients, homozygous for p.Phe508del. The study involved analysis of two microarray datasets, E-GEOD-15568 and E-MTAB-360 corresponding to the rectal and bronchial epithelium, respectively, obtained from the ArrayExpress repository. Particularly, differentially expressed genes (DEGs) were predicted, protein-protein interaction (PPI) networks were designed, and centrality and functional interaction networks were analyzed. The study reported that p.Phe508del-mutated CFTR-allele in homozygous state influenced the whole gene expression in each tissue differently. Interestingly, gene ontology (GO) term enrichment analysis revealed that only “neutrophil activation” was shared between both tissues; however, nonshared DEGs were grouped into the same GO term. For further verification, functional interaction networks were generated, wherein no shared nodes were reported between these tissues. These results suggested that the p.Phe508del-mutated CFTR-allele in homozygous state promoted tissue-specific pathways in fibrocystic patients. The generated data might further assist in prediction diagnosis to define biomarkers or devising therapeutic strategies.

Caitlin Vonderohe ◽  
Gregory Guthrie ◽  
Barbara Stoll ◽  
Shaji Chacko ◽  
Harry Dawson ◽  

Background & Aims: The tissue specific molecular mechanisms involved in perinatal liver and intestinal FXR-FGF19 signaling are poorly defined. Our aim was to establish how gestational age and feeding status affect bile acid synthesis pathway, bile acid pool size, ileal response to bile acid stimulation, genes involved in bile acid-FXR-FGF19 signaling and plasma FGF19 in neonatal pigs. Methods Term (n=23) and preterm (n=33) pigs were born via cesarean section at 100% and 90% gestation, respectively. Plasma FGF19, hepatic bile acid and oxysterol profiles, and FXR target gene expression was assessed in pigs at birth and after a bolus feed on day 3 of life. Pig ileal tissue explants were used to measure signaling response to bile acids. Results Preterm pigs had smaller, more hydrophobic bile acid pools, lower plasma FGF19, and blunted FXR-mediated ileal response to bile acid stimulation than term pigs. GATA-4 expression was higher in jejunum than ileum, and was higher in preterm than term pig ileum. Hepatic oxysterol analysis suggested dominance of the alternative pathway of bile acid synthesis in neonates, regardless of gestational age and persists in preterm pigs after feeding on day 3. Conclusion These results highlight the tissue-specific molecular basis for the immature enterohepatic bile acid signaling via FXR-FGF19 in preterm pigs and may have implications for disturbances of bile acid homeostasis and metabolism in preterm infants.

2021 ◽  
Kirk E. Anderson ◽  
Vincent A. Ricigliano ◽  
Duan Copeland ◽  
Brendon M. Mott ◽  
Patrick Maes

Abstract Honey bees are a model for host-microbial interactions with experimental designs evolving towards conventionalized worker bees. Research on gut microbiome transmission and assembly has examined only a fraction of factors associated with the colony and hive environment. Here we studied the effects of diet and social isolation on tissue-specific bacterial and fungal colonization of the midgut and two key hindgut regions. We found that both treatment factors significantly influenced early hindgut colonization explaining similar proportions of microbiome variation. In agreement with previous work, social interaction with older workers was unnecessary for core hindgut bacterial transmission. Exposure to natural eclosion and fresh stored pollen resulted in gut bacterial communities that were taxonomically and structurally equivalent to those produced in the natural colony setting. Stressed diets of no pollen or autoclaved pollen in social isolation resulted in decreased fungal abundance and bacterial diversity, and atypical microbiome structure and tissue-specific variation of functionally important core bacteria. Without exposure to the active hive environment, the abundance and strain diversity of keystone ileum species Gilliamella apicola was markedly reduced. These changes were associated with significantly larger ileum microbiotas suggesting that extended exposure to the active hive environment plays an antibiotic role in hindgut microbiome establishment. We conclude that core hindgut microbiome transmission is facultative horizontal with 5 of 6 core hindgut species readily acquired from the built hive structure and natural diet. Our findings contribute novel insights into factors influencing assembly and maintenance of honey bee gut microbiota and facilitate future experimental designs.

2021 ◽  
pp. bjsports-2021-104576
Liliána Szabó ◽  
Vencel Juhász ◽  
Zsófia Dohy ◽  
Csenge Fogarasi ◽  
Attila Kovács ◽  

ObjectivesTo investigate the cardiovascular consequences of SARS-CoV-2 infection in highly trained, otherwise healthy athletes using cardiac magnetic resonance (CMR) imaging and to compare our results with sex-matched and age-matched athletes and less active controls.MethodsSARS-CoV-2 infection was diagnosed by PCR on swab tests or serum immunoglobulin G antibody tests prior to a comprehensive CMR examination. The CMR protocol contained sequences to assess structural, functional and tissue-specific data.ResultsOne hundred forty-seven athletes (94 male, median 23, IQR 20–28 years) after SARS-CoV-2 infection were included. Overall, 4.7% (n=7) of the athletes had alterations in their CMR as follows: late gadolinium enhancement (LGE) showing a non-ischaemic pattern with or without T2 elevation (n=3), slightly elevated native T1 values with or without elevated T2 values without pathological LGE (n=3) and pericardial involvement (n=1). Only two (1.4%) athletes presented with definite signs of myocarditis. We found pronounced sport adaptation in both athletes after SARS-CoV-2 infection and athlete controls. There was no difference between CMR parameters, including native T1 and T2 mapping, between athletes after SARS-CoV-2 infection and the matched athletic groups. Comparing athletes with different symptom severities showed that athletes with moderate symptoms had slightly greater T1 values than athletes with asymptomatic and mildly symptomatic infections (p<0.05). However, T1 mapping values remained below the cut-off point for most patients.ConclusionAmong 147 highly trained athletes after SARS-CoV-2 infection, cardiac involvement on CMR showed a modest frequency (4.7%), with definite signs of myocarditis present in only 1.4%. Comparing athletes after SARS-CoV-2 infection and healthy sex-matched and age-matched athletes showed no difference between CMR parameters, including native T1 and T2 values.

Yuhao Sun ◽  
Jiawei Geng ◽  
Xuejie Chen ◽  
Hui Chen ◽  
Xiaoyan Wang ◽  

Abstract Background The association between inflammatory bowel disease (IBD) and dementia remains uncertain. We aim to investigate whether IBD is associated with higher dementia risk. Methods Using multivariable Cox regression models, we analyzed the onset of all-cause dementia among 497,775 participants, including 5778 IBD patients in the UK Biobank as primary analysis. In secondary analysis, we further examined the difference in brain structure and cognitive function changes between IBD and non-IBD individuals. The diagnosis of IBD and dementia was confirmed with combination of primary care data, hospital inpatient data, death registry, and self-report data. Brain structure was measured by brain MRI as anatomic and tissue-specific volumes; cognitive function was tested in terms of reaction, visual episodic memory, verbal-numerical reasoning, and prospective memory. Results During a mean follow-up of 11.58 years, 100 and 6709 incident all-cause dementia with or without IBD were documented, respectively. In multivariable Cox regression model, hazard ratio for incident dementia among IBD patients was 1.14 (95% confidence interval [CI], 0.94-1.39; P=.182) comparing with non-IBD participants; no statistically significant difference was observed in their brain MRI measures of anatomic and tissue-specific volumes, whereas IBD patients had a significantly increased reaction time (β=12.32; 95% CI, 1.97, 22.67; P = .020). Results of subgroup and sensitivity analyses were consistent with the main analysis. Conclusions Our study does not support a significant association between IBD and dementia. Further studies with better design and longer follow-up are needed to elucidate the association.

2021 ◽  
Vol 22 (23) ◽  
pp. 12855
Ana Lilia Torres-Machorro

The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1195
Lulu Chen ◽  
Yuhang Li ◽  
Yuting Wang ◽  
Wenzhen Li ◽  
Xuechao Feng ◽  

Genetic modification can be an effective strategy for improving the agronomic traits of tomato (Solanum lycopersicum) to meet demands for yield, quality, functional components, and stress tolerance. However, limited numbers of available tissue-specific promoters represent a bottleneck for the design and production of transgenic plants. In the current study, a total of 25 unigenes were collected from an RNA-sequence dataset based on their annotation as being exclusively expressed in five type of tissues of tomato pericarp (outer and inner epidermis, collenchyma, parenchyma, and vascular tissues), and every five unigenes, was respectively selected from each tissue based on transcription expression. The 3-kb 5′ upstream region of each unigene was identified from the tomato genome sequence (SL2.50) using annotated unigene sequences, and the promoter sequences were further analyzed. The results showed an enrichment in T/A (T/A > 70%) in the promoter regions. A total of 15 putative tissue-/organ-specific promoters were identified and analyzed by real-time (RT) quantitative (q) PCR analysis, of which six demonstrated stronger activity than widely used tissue-specific tomato promoters. These results demonstrate how high spatiotemporal and high throughput gene expression data can provide a powerful means of identifying spatially targeted promoters in plants.

Sarah Whiteley ◽  
Robert D McCuaig ◽  
Clare E Holleley ◽  
Sudha Rao ◽  
Arthur Georges

Abstract The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, has been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodelling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterised tissue specific expression and cellular localisation patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.

Sign in / Sign up

Export Citation Format

Share Document