Finite point method: a new approach to model the inflation of side curtain airbags

2005 ◽  
Vol 10 (5) ◽  
pp. 445-450 ◽  
Author(s):  
E Gai ◽  
H Zhang
2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
S. Moazam ◽  
Z. Nalbantoglu ◽  
M. Celikag

Wave propagation in an unbounded domain surrounding the stimulation resource is one of the important issues for engineers. Past literature is mainly concentrated on the modelling and estimation of the wave propagation in partially layered, homogeneous, and unbounded domains with harmonic properties. In this study, a new approach based on the Finite Point Method (FPM) has been introduced to analyze and solve the problems of wave propagation in any nonhomogeneous unbounded domain. The proposed method has the ability to use the domain properties by coordinate as an input. Therefore, there is no restriction in the form of the domain properties, such as being periodical as in the case of existing similar numerical methods. The proposed method can model the boundary points between phases with trace of errors and the results of this method satisfy both conditions of decay and radiation.


2011 ◽  
Vol 110-116 ◽  
pp. 2740-2745
Author(s):  
Kirana Kumara P. ◽  
Ashitava Ghosal

Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.


2019 ◽  
Vol 19 (4) ◽  
pp. 813-831
Author(s):  
Rezvan Salehi

AbstractIn this paper, the distributed-order time fractional sub-diffusion equation on the bounded domains is studied by using the finite-point-type meshless method. The finite point method is a point collocation based method which is truly meshless and computationally efficient. To construct the shape functions of the finite point method, the moving least square reproducing kernel approximation is employed. Two implicit discretisation of order{O(\tau)}and{O(\tau^{1+\frac{1}{2}\sigma})}are derived, respectively. Stability and{L^{2}}norm convergence of the obtained difference schemes are proved. Numerical examples are provided to confirm the theoretical results.


2016 ◽  
Vol 2016 ◽  
pp. 1-23 ◽  
Author(s):  
Peng Liu ◽  
Kun Lin ◽  
Hongjun Liu ◽  
Rong Qin

A new model for the free transverse vibration of axially functionally graded (FG) tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM) by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.


Sign in / Sign up

Export Citation Format

Share Document