Unique Fixed Point Theorem for Weakly Inward Contractions and Fixed Point Curve in 2-Banach Space

2015 ◽  
Vol 3 (2) ◽  
pp. 173-182
Author(s):  
P Riyas ◽  
KT Ravindran
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Chenguang Wang ◽  
Jinxiu Mao ◽  
Zengqin Zhao

In this work, we mainly improve the results in Amini-Harandi and Emami (2010). By introducing a new kind of ordered contraction-type decreasing operator in Banach space, we obtain a unique fixed point by using the iterative algorithm. An example is also presented to illustrate the theorem.


1993 ◽  
Vol 16 (2) ◽  
pp. 397-400 ◽  
Author(s):  
Ljubomir B. ciric

LetXbe a Banach space,Ka non-empty closed subset ofXandT:K→Xa mapping satisfying the contractive definition (1.1) below and the conditionT(∂K)⫅K. ThenThas a unique fixed point inK. This result improves Theorem of Rhoades [1] and generalizes the corresponding theorem of Assad [2].


Author(s):  
Brian Fisher ◽  
Salvatore Sessa

We consider two selfmapsTandIof a closed convex subsetCof a Banach spaceXwhich are weakly commuting inX, i.e.‖TIx−ITx‖≤‖Ix−Tx‖   for   any   x   in   X,and satisfy the inequality‖Tx−Ty‖≤a‖Ix−Iy‖+(1−a)max{‖Tx−Ix‖,‖Ty−Iy‖}for allx,yinC, where0<a<1. It is proved that ifIis linear and non-expansive inCand such thatICcontainsTC, thenTandIhave a unique common fixed point inC.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
M. I. Berenguer ◽  
D. Gámez ◽  
A. I. Garralda-Guillem ◽  
M. C. Serrano Pérez

We obtain an approximation of the solution of the nonlinear Volterra integral equation of the second kind, by means of a new method for its numerical resolution. The main tools used to establish it are the properties of a biorthogonal system in a Banach space and the Banach fixed point theorem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Soniya Singh ◽  
Bhupander Singh ◽  
Kottakkaran Sooppy Nisar ◽  
Abd-Allah Hyder ◽  
M. Zakarya

AbstractIn this article, we provide the existence result for functional integral equations by using Petryshyn’s fixed point theorem connecting the measure of noncompactness in a Banach space. The results enlarge the corresponding results of several authors. We present fascinating examples of equations.


2009 ◽  
Vol 40 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Zuomao Yan

In this paper, by using the theory of evolution families, Banach's contraction principle and Schauder's fixed point theorem, we prove the existence of mild solutions of a class of semilinear evolution integrodifferential equations with nonlocal conditions in Banach space. An example is provided to illustrate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document