nonlocal conditions
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 152)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Oscar Camacho ◽  
Hugo Leiva ◽  
Lenin Riera

When a real-life problem is mathematically modeled by differential equations or another type of equation, there are always intrinsic phenomena that are not taken into account and can affect the behavior of such a model. For example, external forces can abruptly change the model; impulses and delay can cause a breakdown of it. Considering these intrinsic phenomena in the mathematical model makes the difference between a simple differential equation and a differential equation with impulses, delay, and nonlocal conditions. So, in this work, we consider a semilinear nonautonomous neutral differential equation under the influence of impulses, delay, and nonlocal conditions. In this paper we study the controllability of these semilinear neutral differential equations with some of these intrinsic phenomena taking into consideration. Our aim is to prove that the controllability of the associated ordinary linear differential equation is preserved under certain conditions imposed on these new disturbances. In order to achieve our objective, we apply Rothe’s fixed point Theorem to prove the exact controllability of the system. Finally, our method can be extended to the evolution equation in Hilbert spaces with applications to control systems governed by PDE’s equations.


2021 ◽  
Vol 60 (6) ◽  
pp. 5511-5520
Author(s):  
Tran Ngoc Thach ◽  
Devendra Kumar ◽  
Nguyen Hoang Luc ◽  
Nguyen Duc Phuong

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Abeer S. Alnahdi ◽  
Mdi Begum Jeelani ◽  
Mohammed S. Abdo ◽  
Saeed M. Ali ◽  
S. Saleh

AbstractIn this paper, we study a class of initial value problems for a nonlinear implicit fractional differential equation with nonlocal conditions involving the Atangana–Baleanu–Caputo fractional derivative. The applied fractional operator is based on a nonsingular and nonlocal kernel. Then we derive a formula for the solution through the equivalent fractional functional integral equations to the proposed problem. The existence and uniqueness are obtained by means of Schauder’s and Banach’s fixed point theorems. Moreover, two types of the continuous dependence of solutions to such equations are discussed. Finally, the paper includes two examples to substantiate the validity of the main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. Mohan Raja ◽  
Velusamy Vijayakumar ◽  
Anurag Shukla ◽  
Kottakkaran Sooppy Nisar ◽  
Shahram Rezapour

AbstractIn this manuscript, we deal with the nonlocal controllability results for the fractional evolution system of $1< r<2$ 1 < r < 2 in a Banach space. The main results of this article are tested by using fractional calculations, the measure of noncompactness, cosine families, Mainardi’s Wright-type function, and fixed point techniques. First, we investigate the controllability results of a mild solution for the fractional evolution system with nonlocal conditions using the Mönch fixed point theorem. Furthermore, we develop the nonlocal controllability results for fractional integrodifferential evolution system by applying the Banach fixed point theorem. Finally, an application is presented for drawing the theory of the main results.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2084
Author(s):  
Sarra Guechi ◽  
Rajesh Dhayal ◽  
Amar Debbouche ◽  
Muslim Malik

The goal of this paper is to consider a new class of φ-Hilfer fractional differential equations with impulses and nonlocal conditions. By using fractional calculus, semigroup theory, and with the help of the fixed point theorem, the existence and uniqueness of mild solutions are obtained for the proposed fractional system. Symmetrically, we discuss the existence of optimal controls for the φ-Hilfer fractional control system. Our main results are well supported by an illustrative example.


2021 ◽  
Vol 26 (4) ◽  
pp. 73
Author(s):  
Dmytro Sytnyk ◽  
Roderick Melnik

Nonlocal models are ubiquitous in all branches of science and engineering, with a rapidly expanding range of mathematical and computational applications due to the ability of such models to capture effects and phenomena that traditional models cannot. While spatial nonlocalities have received considerable attention in the research community, the same cannot be said about nonlocality in time, in particular when nonlocal initial conditions are present. This paper aims at filling this gap, providing an overview of the current status of nonlocal models and focusing on the mathematical treatment of such models when nonlocal initial conditions are at the heart of the problem. Specifically, our representative example is given for a nonlocal-in-time problem for the abstract Schrödinger equation. By exploiting the linear nature of nonlocal conditions, we derive an exact representation of the solution operator under assumptions that the spectrum of Hamiltonian is contained in the horizontal strip of the complex plane. The derived representation permits us to establish the necessary and sufficient conditions for the problem’s well-posedness and the existence of its solution under different regularities. Furthermore, we present new sufficient conditions for the existence of the solution that extend the existing results in this field to the case when some nonlocal parameters are unbounded. Two further examples demonstrate the developed methodology and highlight the importance of its computer algebra component in the reduction procedures and parameter estimations for nonlocal models. Finally, a connection of the considered models and developed analysis is discussed in the context of other reduction techniques, concentrating on the most promising from the viewpoint of data-driven modelling environments, and providing directions for further generalizations.


Sign in / Sign up

Export Citation Format

Share Document