Solution of Bojanov-Naidenov problem with constraints for the norm $\|x\|_{p,\delta} = \sup \bigl\{ \| x \|_{L_p[a;b]} \colon a,b\in \mathbb{R}, b-a\leqslant \delta \bigr\}$
For given $r\in \mathbb{N}$; $p,\lambda > 0$ and fixed interval $[a;b] \subset \mathbb{R}$ we solve the extremal problems 1) $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q > p$, 2) $\int\limits_a^b |x^{(k)}(t)|^q dt \rightarrow \sup$, $q \geqslant 1$, $k\in \mathbb{N}$, $k < r$, on the set of functions $f\in L^r_{\infty}$ such that $\|x^{(r)}\|_{\infty} \leqslant 1$, $\|x\|_{p,\delta} \leqslant \| \varphi_{\lambda,r} \|_{p,\delta}$, $\delta \in (0,\pi / \lambda)$.
Keyword(s):
1969 ◽
Vol 12
(1)
◽
pp. 199-209
◽
1972 ◽
Vol 33
(2)
◽
pp. 311-324
◽
2016 ◽
Vol 6
(2)
◽
pp. 105
1963 ◽
Vol 2
(3)
◽
pp. 524-527
◽
Keyword(s):