scholarly journals Solution of Bojanov-Naidenov problem with constraints for the norm $\|x\|_{p,\delta} = \sup \bigl\{ \| x \|_{L_p[a;b]} \colon a,b\in \mathbb{R}, b-a\leqslant \delta \bigr\}$

2017 ◽  
Vol 25 ◽  
pp. 41
Author(s):  
V.A. Kofanov

For given $r\in \mathbb{N}$; $p,\lambda > 0$ and fixed interval $[a;b] \subset \mathbb{R}$ we solve the extremal problems 1) $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q > p$, 2) $\int\limits_a^b |x^{(k)}(t)|^q dt \rightarrow \sup$, $q \geqslant 1$, $k\in \mathbb{N}$, $k < r$, on the set of functions $f\in L^r_{\infty}$ such that $\|x^{(r)}\|_{\infty} \leqslant 1$, $\|x\|_{p,\delta} \leqslant \| \varphi_{\lambda,r} \|_{p,\delta}$, $\delta \in (0,\pi / \lambda)$.


2019 ◽  
Vol 27 (1) ◽  
pp. 28
Author(s):  
K.A. Danchenko ◽  
V.A. Kofanov

We consider the Bojanov-Naidenov problem over the set $\sigma_{h,r}$ of all non-periodic splines $s$ of order $r$ and minimal defect with knots at the points $kh$, $k \in \mathbb{Z}$. More exactly, for given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a, b] \subset \mathbb{R}$ we solve the following extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over the classes $\sigma_{h,r}^p(A) := \bigl\{ s(\cdot + \tau) \colon s \in \sigma_{h,r}, \| s \|_{p, \delta} \leqslant A \| \varphi_{\lambda, r} \|_{p, \delta}, \delta \in (0, h], \tau \in \mathbb{R} \bigr\}$, where $\| x \|_{p, \delta} := \sup \bigl\{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a \leqslant \delta \bigr\}$, and $\varphi_{\lambda, r}$ is $(2\pi / \lambda)$-periodic spline of Euler of order $r$. In particularly, for $k = 1, ..., r - 1$ we solve the extremal problem $\int\limits_a^b |x^{(k)}(t)|^q dt \rightarrow \sup$, $q \geqslant 1$, over the classes $\sigma_{h,r}^p (A)$. Note that the problems (1) and (2) were solved earlier on the classes $\sigma_{h,r}(A, p) := \bigl\{ s(\cdot + \tau) \colon s \in \sigma_{h,r}, L(s)_p \leqslant AL(\varphi_{n,r})_p, \tau \in \mathbb{R} \bigr\}$, where $L(x)_p := \sup \bigl\{ \| x \|_{L_p[a, b]} \colon a, b \in \mathbb{R}, |x(t)| > 0, t \in (a, b) \bigr\}$. We prove that the classes $\sigma_{h,r}^p (A)$ are wider than the classes $\sigma_{h,r}(A,p)$. Similarly we solve the analog of Erdös problem about the characterisation of the spline $s \in \sigma_{h,r}^p(A)$ that has maximal arc length over fixed interval $[a, b] \subset \mathbb{R}$.



1969 ◽  
Vol 12 (1) ◽  
pp. 199-209 ◽  
Author(s):  
David A. Nelson ◽  
Frank M. Lassman ◽  
Richard L. Hoel

Averaged auditory evoked responses to 1000-Hz 20-msec tone bursts were obtained from normal-hearing adults under two different intersignal interval schedules: (1) a fixed-interval schedule with 2-sec intersignal intervals, and (2) a variable-interval schedule of intersignal intervals ranging randomly from 1.0 sec to 4.5 sec with a mean of 2 sec. Peak-to-peak amplitudes (N 1 — P 2 ) as well as latencies of components P 1 , N 1 , P 2 , and N 2 were compared under the two different conditions of intersignal interval. No consistent or significant differences between variable- and fixed-interval schedules were found in the averaged responses to signals of either 20 dB SL or 50 dB SL. Neither were there significant schedule differences when 35 or 70 epochs were averaged per response. There were, however, significant effects due to signal amplitude and to the number of epochs averaged per response. Response amplitude increased and response latency decreased with sensation level of the tone burst.



1969 ◽  
Author(s):  
Rachel R. Tallen ◽  
James A. Dinsmoor






1972 ◽  
Vol 33 (2) ◽  
pp. 311-324 ◽  
Author(s):  
Edward Gottheil ◽  
Lacey O. Corbett ◽  
Joseph C. Grasberger ◽  
Floyd S. Cornelison


2016 ◽  
Vol 6 (2) ◽  
pp. 105
Author(s):  
N. Murugesan ◽  
R. Anitha


2019 ◽  
Vol 36 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Alberto Seeger ◽  
David Sossa
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document