signal amplitude
Recently Published Documents


TOTAL DOCUMENTS

816
(FIVE YEARS 260)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 1049 ◽  
pp. 317-324
Author(s):  
Abdumalik G. Gaibov ◽  
K.I. Vakhobov ◽  
B.V. Ibragimova ◽  
U.E. Zhuraev ◽  
D.T. Rasulova

The currents of n-p junctions and polarization effects caused by the capture processes of diffusion Si-receivers (detectors) of radiation exposed by ultrasound have been analyzed in this work. It was found that there are local concentrations of impurity atoms with an effective size l>6μm30μm in Si-n-p radiation receivers. They determine the behavior of the signal amplitude in different intervals of electric and temperature fields. It was found that at Е>1500V/cm and T>168K, the efficiency of collecting nonequilibrium charge carriers significantly increases and doublets of spectral α-lines and “humps” disappear at the temperature dependences of the signal amplitude. The main physical processes and mechanisms that determine the appearance of the phenomenon of "polarization" of Si-n-p-detectors were investigated. This phenomenon is caused by the existence of local gold atoms, which arise in the process of manufacturing technology of Si-n-p-receivers and act as effective trapping centers.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 524
Author(s):  
Ju Lan ◽  
Jingjun Zhang ◽  
Xiaojuan Jia ◽  
Ruizhen Gao

The energy conversion of electromagnetic acoustic transducers (EMATs) is typically lower, which seriously restricts the application of EMATs in the field of non-destructive testing and evaluation. In this work, parameters of surface wave EMATs, including structural parameters and electrical parameters, are investigated using the orthogonal test method to improve the transducer’s energy conversion efficiency. Based on the established finite element 2-D model of EMATs, the amplitude of the displacement components at the observation point of a plate is the optimization objective to be maximized with five parameters pertaining to the magnets, meander-line coils, and excitation signal as design variables. Results show that the signal amplitude of EMATs is 3.48 times on in-plane and 3.49 times on out-of-plane, respectively, compared with the original model. Furthermore, a new material (amorphous nanocrystalline material of type 1K107) is applied to optimize the magnetic circuit of EMATs and enhance the eddy current in an aluminum plate to increase the signal amplitude. Finally, the signal amplitudes obtained from the three types of models, that is, the original one, the optimization one after an orthogonal test, and the optimization one with the addition of magnetic concentrators, are analyzed and compared, indicating that the signal amplitude, compared with the original one, is 6.02 times on in-plane and 6.20 times on out-of-plane, respectively.


Author(s):  
Mikhail Bryushinin ◽  
Vladimir Kulikov ◽  
Alexander Petrov ◽  
Igor Sokolov ◽  
Roman Romashko ◽  
...  

Abstract We report the nonstationary holographic current excitation in a β-Ga2O3 crystal at light wavelength λ=457 nm. The material demonstrates insulating properties and high transparency for a visible light, but this, however, does not prevent the dynamic space-charge grating formation and the holographic current observation for various external electric fields - zero, dc and ac ones. The signal amplitude is measured and analyzed versus the frequency of phase modulation, spatial frequency and electric field value. The main photoelectric parameters such as specific photoconductivity, sensor responsivity and diffusion length of carriers are determined for the blue region of spectrum.


2022 ◽  
Vol 904 ◽  
pp. 43-49
Author(s):  
Bai Xue Fu ◽  
Wei Wang ◽  
Zi Yuan Cheng ◽  
Yu Bao

Using ultrasonic time difference method to test automobile fuel consumption, the test accuracy mainly depends on the testing system timing accuracy and ultrasonic flow sensor output signal-to-noise ratio. At present, the timing accuracy of the single-chip can reach the level of picosecond, and the noise mixed in the output signal of the ultrasonic converter is the main factor affecting the accuracy of fuel consumption testing. When the receiving signal contains noise, it will cause the signal amplitude to fluctuate, making the measurement time error. The analysis of same-frequency noise, circuit noise and colored noise is carried out, and the feasible measures to eliminate noise are put forward to provide reference for accurate calculation of sound and development of high-precision automobile fuel consumption test instruments.


2022 ◽  
Vol 52 (1) ◽  
pp. 94-99
Author(s):  
S K Evstropiev ◽  
V V Demidov ◽  
D V Bulyga ◽  
R V Sadovnichii ◽  
G A Pchelkin ◽  
...  

Abstract We report the development of a group of luminescent fibre-optic temperature sensors that use Ce3+-, Dy3+-, and Yb3+-doped yttrium aluminium garnet (YAG) nanophosphors as thermosensitive materials. The nanophosphors have been prepared in the form of powders with a crystallite size from 19 to 27 nm by a polymer ? salt method and exhibit bright luminescence at 550 (YAG : Ce3+), 400, 480 (YAG : Dy3+), and 1030 nm (YAG : Yb3+). The sensor design includes a silica capillary, partially filled with a nanophosphor, and two large-aperture multimode optical fibres located in the capillary, which deliver excitation light and receive and transmit the photoluminescence signal. The photoluminescence signal amplitude of all the sensors decreases exponentially with increasing temperature, pointing to characteristic thermal quenching of photoluminescence and adequate operation of the devices up to 500 °C. The highest temperature sensitivity among the fibre-optic sensors is offered by the YAG : Ce3+ nanophosphor-based devices.


2022 ◽  
Vol 17 (01) ◽  
pp. T01001
Author(s):  
H. Kim ◽  
G. Adhikari ◽  
E. Barbosa de Souza ◽  
N. Carlin ◽  
J.J. Choi ◽  
...  

Abstract The COSINE-100 experiment is designed to test the DAMA experiment which claimed an observation of a dark matter signal from an annual modulation in their residual event rate. To measure the 1 %-level signal amplitude, it is crucial to control and monitor nearly all environmental quantities that might systematically mimic the signal. The environmental monitoring also helps ensure a stable operation of the experiment. Here, we describe the design and performance of the centralized environmental monitoring system for the COSINE-100 experiment.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 38
Author(s):  
Andrea Pizzuti ◽  
Alec Bennett ◽  
Martin Füllekrug

Constructive interference of lightning-generated signals in the extremely low frequency (ELF) below 100 Hz is the source of a global electromagnetic phenomenon in the Earth’s atmosphere known as Schumann Resonances (SR). SR are excited at frequencies of 7.8, 14, 20, 26, … Hz, and their diurnal and seasonal intensity variations are largely dependent on changes in the location and magnitude of the major lightning centres in Southeast Asia, Africa, and South America. In the last five decades, extensive research has focused on reconstructing the spatial and temporal evolution in global lighting activity using SR measurements, and more recently on analysing the links to climate change, transient luminous events (TLE), and biological systems. In this study, a quasi-electrostatic antenna, primarily designed as a thunderstorm warning system, is for the first time applied to measure background variability in the SR band at an urban site in Southwest England. Data collected continuously from June 2015 for a 5-year period are suitably filtered and analysed showing that SR is the dominant contribution to the fair-weather displacement current measured by the sensor in the band 10–45 Hz. Diurnal and seasonal signal amplitude variations have been found to be consistent with previous studies and show the African-European lightning centre to prevail due to the shorter source-observer distance. Also, it is shown that long-term global changes in the ocean and land temperature, and the subsequent effect on the major lightning hotspots, may be responsible for the inter-annual variability of SR intensity, indicating that the largest increase occurred during the 2015–2016 super El-Niño episode.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Wei Li ◽  
Shuo Li ◽  
Leilei Ji ◽  
Xiaofan Zhao ◽  
Weidong Shi ◽  
...  

Based on CFD analysis technology, this paper studies the cavitation performance of an LNG submerged pump and the pressure pulsation characteristics under cavitation excitation. The variation laws of the waveform, amplitude and frequency of the pressure pulsation in the impeller of the LNG submerged pump under different flow rates and NPSHa are also analysed. By calculating the root mean square of the pressure coefficient of the low-frequency pulsation, the influence of the aggravation process of cavitation on the low-frequency pulsation in the LNG submerged pump is quantitatively analysed, and the characteristics of the pressure pulsation in the LNG submerged pump under the cavitation condition are revealed. The results show that with the increase in flow rate, the pressure pulsation in the impeller becomes stronger, periodically, and the amplitude decreases. The influence of cavitation on the pressure pulsation in the primary impeller is greater than that in the secondary impeller. When critical cavitation occurs, the low-frequency signal amplitude of pressure pulsation in the primary impeller increases and exceeds the blade frequency, becoming the main frequency.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8578
Author(s):  
Roman Baraniuk ◽  
Welf-Guntram Drossel

Nowadays, every large enterprise is concerned about reducing CO2 emissions. Along with legislation, management, packaging, and transportation decisions, optimising the operation of automated systems in the industry is important. Overheating processes or large cooling systems of one machine during product assembly may seem minor but at the industry level it is quite significant. Either an optimisation of cooling systems or an intelligent machine control which will prevent heat strokes and allow the transition to passive cooling of the whole system is an important issue for improving machine tools efficiency and contributing therefore to CO2 reduction in the industry sector. This research is a transitional phase from the creation of a control system to solve the problems of resonance in the control of systems with parallel piezo kinematics, which were designed to automate the iterative process of non-circular drilling with a precise shape and the subsequent research on the implementation of smart control to optimise the cooling of industrial machines. The total dynamics of the example system in this research is unknown and consists of the dynamics of electrical converters, piezo kinematics, and mechanics. The control signal of this system is generated by the model of the system state with assumptions and simplifications in combination with machine learning techniques considering the previous errors of the transient characteristics with the possibility of re-drilling without damaging the workpiece and with possibility of further trainings to eliminate the iterative process in general. Algorithms for further training at different resonances with a drilling depth change for cylinders of internal combustion engines are offered. These algorithms are proposed for accurate transmission of the input signal amplitude even in resonant situations, power optimisation, increase the system efficiency, as well as reducing the carbon footprint when used in industry in specific applications.


Author(s):  
Walter C. Daugherity ◽  
Laszlo B. Kish

We point out that the exponentially fast, grounding-based search scheme in noise-based logic works mostly on core superpositions. When the superposition contains elements that are outputs of logic gate operations, the search result can be erroneous, because grounding of a reference bit can change a logic function too. Adding superpositions with a search bit of inverted signal amplitude sign (sign inversion instead of grounding) can fix the problem in special cases, but a general solution is yet to be found. Note that because phonebooks are core superpositions, the original search algorithm remains valid for phonebook lookups, for both name and number search, including fractions of names or numbers.


Sign in / Sign up

Export Citation Format

Share Document